» Articles » PMID: 32054031

MiRNAs and LncRNAs: Dual Roles in TGF-β Signaling-Regulated Metastasis in Lung Cancer

Overview
Journal Int J Mol Sci
Publisher MDPI
Date 2020 Feb 15
PMID 32054031
Citations 46
Authors
Affiliations
Soon will be listed here.
Abstract

Lung cancer is one of the most malignant cancers around the world, with high morbidity and mortality. Metastasis is the leading cause of lung cancer deaths and treatment failure. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs), two groups of small non-coding RNAs (nc-RNAs), are confirmed to be lung cancer oncogenes or suppressors. Transforming growth factor-β (TGF-β) critically regulates lung cancer metastasis. In this review, we summarize the dual roles of miRNAs and lncRNAs in TGF-β signaling-regulated lung cancer epithelial-mesenchymal transition (EMT), invasion, migration, stemness, and metastasis. In addition, lncRNAs, competing endogenous RNAs (ceRNAs), and circular RNAs (circRNAs) can act as miRNA sponges to suppress miRNAs, thereby mediating TGF-β signaling-regulated lung cancer invasion, migration, and metastasis. Through this review, we hope to cast light on the regulatory mechanisms of miRNAs and lncRNAs in TGF-β signaling-regulated lung cancer metastasis and provide new insights for lung cancer treatment.

Citing Articles

Epigenetic modifications in early stage lung cancer: pathogenesis, biomarkers, and early diagnosis.

Bi L, Wang X, Li J, Li W, Wang Z MedComm (2020). 2025; 6(3):e70080.

PMID: 39991629 PMC: 11843169. DOI: 10.1002/mco2.70080.


FAM210B activates STAT1/IRF9/IFIT3 axis by upregulating IFN-α/β expression to impede the progression of lung adenocarcinoma.

Gao X, Huang D, Liu Y, Zhang G, Zheng X, Guan B Cell Death Dis. 2025; 16(1):63.

PMID: 39900908 PMC: 11791038. DOI: 10.1038/s41419-025-07375-9.


Broadening horizons: molecular mechanisms and disease implications of endothelial-to-mesenchymal transition.

Qian C, Dong G, Yang C, Zheng W, Zhong C, Shen Q Cell Commun Signal. 2025; 23(1):16.

PMID: 39789529 PMC: 11720945. DOI: 10.1186/s12964-025-02028-y.


Signaling pathway regulators in preimplantation embryos.

Karami N, Taei A, Eftekhari-Yazdi P, Hassani F J Mol Histol. 2024; 56(1):57.

PMID: 39729177 DOI: 10.1007/s10735-024-10338-7.


Integrated machine learning to predict the prognosis of lung adenocarcinoma patients based on SARS-COV-2 and lung adenocarcinoma crosstalk genes.

Wu Y, Cui Y, Zheng X, Yao X, Sun G Cancer Sci. 2024; 116(1):95-111.

PMID: 39489517 PMC: 11711064. DOI: 10.1111/cas.16384.


References
1.
Salvo E, Garasa S, Dotor J, Morales X, Pelaez R, Altevogt P . Combined targeting of TGF-β1 and integrin β3 impairs lymph node metastasis in a mouse model of non-small-cell lung cancer. Mol Cancer. 2014; 13:112. PMC: 4049383. DOI: 10.1186/1476-4598-13-112. View

2.
Lin L, Tu H, Wu L, Liu M, Jiang G . MicroRNA-21 Regulates Non-Small Cell Lung Cancer Cell Invasion and Chemo-Sensitivity through SMAD7. Cell Physiol Biochem. 2016; 38(6):2152-62. DOI: 10.1159/000445571. View

3.
Wei S, Wang K, Huang X, Zhao Z, Zhao Z . LncRNA MALAT1 contributes to non-small cell lung cancer progression via modulating miR-200a-3p/programmed death-ligand 1 axis. Int J Immunopathol Pharmacol. 2019; 33:2058738419859699. PMC: 6595645. DOI: 10.1177/2058738419859699. View

4.
Wang W, Ding M, Duan X, Feng X, Wang P, Jiang Q . Diagnostic Value of Plasma MicroRNAs for Lung Cancer Using Support Vector Machine Model. J Cancer. 2019; 10(21):5090-5098. PMC: 6775617. DOI: 10.7150/jca.30528. View

5.
Xu J, Su C, Zhao F, Tao J, Hu D, Shi A . Paclitaxel promotes lung cancer cell apoptosis via MEG3-P53 pathway activation. Biochem Biophys Res Commun. 2018; 504(1):123-128. DOI: 10.1016/j.bbrc.2018.08.142. View