» Articles » PMID: 32053107

Paradoxical Network Excitation by Glutamate Release from VGluT3 GABAergic Interneurons

Abstract

In violation of Dale's principle several neuronal subtypes utilize more than one classical neurotransmitter. Molecular identification of vesicular glutamate transporter three and cholecystokinin expressing cortical interneurons (CCKVGluT3INTs) has prompted speculation of GABA/glutamate corelease from these cells for almost two decades despite a lack of direct evidence. We unequivocally demonstrate CCKVGluT3INT-mediated GABA/glutamate cotransmission onto principal cells in adult mice using paired recording and optogenetic approaches. Although under normal conditions, GABAergic inhibition dominates CCKVGluT3INT signaling, glutamatergic signaling becomes predominant when glutamate decarboxylase (GAD) function is compromised. CCKVGluT3INTs exhibit surprising anatomical diversity comprising subsets of all known dendrite targeting CCK interneurons in addition to the expected basket cells, and their extensive circuit innervation profoundly dampens circuit excitability under normal conditions. However, in contexts where the glutamatergic phenotype of CCKVGluT3INTs is amplified, they promote paradoxical network hyperexcitability which may be relevant to disorders involving GAD dysfunction such as schizophrenia or vitamin B6 deficiency.

Citing Articles

Synaptic Targets and Cellular Sources of CB1 Cannabinoid Receptor and Vesicular Glutamate Transporter-3 Expressing Nerve Terminals in Relation to GABAergic Neurons in the Human Cerebral Cortex.

Somogyi P, Horie S, Lukacs I, Hunter E, Sarkany B, Viney T Eur J Neurosci. 2025; 61(1):e16652.

PMID: 39810425 PMC: 11733414. DOI: 10.1111/ejn.16652.


VGluT3 BNST neurons transmit GABA and restrict feeding without affecting rewarding or aversive processing.

Ly A, Karnosky R, Prevost E, Hotchkiss H, Pelletier J, Spencer R bioRxiv. 2025; .

PMID: 39803518 PMC: 11722381. DOI: 10.1101/2025.01.01.631003.


Development of Differential Sublaminar Feedforward Inhibitory Circuits in CA1 Hippocampus Requires .

Hanson M, Bibi N, Safa A, Nagarajan D, Marshall A, Johantges A J Neurosci. 2025; 45(8).

PMID: 39753301 PMC: 11841754. DOI: 10.1523/JNEUROSCI.0737-24.2024.


Widespread co-release of glutamate and GABA throughout the mouse brain.

Ceballos C, Ma L, Qin M, Zhong H Commun Biol. 2024; 7(1):1502.

PMID: 39537846 PMC: 11560972. DOI: 10.1038/s42003-024-07198-y.


Median raphe glutamatergic neuron-mediated enhancement of GABAergic transmission and suppression of long-term potentiation in the hippocampus.

Stinson H, Ninan I Heliyon. 2024; 10(19):e38192.

PMID: 39386853 PMC: 11462361. DOI: 10.1016/j.heliyon.2024.e38192.


References
1.
Omiya Y, Uchigashima M, Konno K, Yamasaki M, Miyazaki T, Yoshida T . VGluT3-expressing CCK-positive basket cells construct invaginating synapses enriched with endocannabinoid signaling proteins in particular cortical and cortex-like amygdaloid regions of mouse brains. J Neurosci. 2015; 35(10):4215-28. PMC: 6605299. DOI: 10.1523/JNEUROSCI.4681-14.2015. View

2.
Fisahn A, Pike F, Buhl E, Paulsen O . Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro. Nature. 1998; 394(6689):186-9. DOI: 10.1038/28179. View

3.
Grimes W, Seal R, Oesch N, Edwards R, Diamond J . Genetic targeting and physiological features of VGLUT3+ amacrine cells. Vis Neurosci. 2011; 28(5):381-92. PMC: 4150031. DOI: 10.1017/S0952523811000290. View

4.
Dimidschstein J, Chen Q, Tremblay R, Rogers S, Saldi G, Guo L . A viral strategy for targeting and manipulating interneurons across vertebrate species. Nat Neurosci. 2016; 19(12):1743-1749. PMC: 5348112. DOI: 10.1038/nn.4430. View

5.
Root D, Mejias-Aponte C, Zhang S, Wang H, Hoffman A, Lupica C . Single rodent mesohabenular axons release glutamate and GABA. Nat Neurosci. 2014; 17(11):1543-51. PMC: 4843828. DOI: 10.1038/nn.3823. View