» Articles » PMID: 32051413

Variant Antigen Diversity in Trypanosoma Vivax is Not Driven by Recombination

Overview
Journal Nat Commun
Specialty Biology
Date 2020 Feb 14
PMID 32051413
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

African trypanosomes (Trypanosoma) are vector-borne haemoparasites that survive in the vertebrate bloodstream through antigenic variation of their Variant Surface Glycoprotein (VSG). Recombination, or rather segmented gene conversion, is fundamental in Trypanosoma brucei for both VSG gene switching and for generating antigenic diversity during infections. Trypanosoma vivax is a related, livestock pathogen whose VSG lack structures that facilitate gene conversion in T. brucei and mechanisms underlying its antigenic diversity are poorly understood. Here we show that species-wide VSG repertoire is broadly conserved across diverse T. vivax clinical strains and has limited antigenic repertoire. We use variant antigen profiling, coalescent approaches and experimental infections to show that recombination plays little role in diversifying T. vivax VSG sequences. These results have immediate consequences for both the current mechanistic model of antigenic variation in African trypanosomes and species differences in virulence and transmission, requiring reconsideration of the wider epidemiology of animal African trypanosomiasis.

Citing Articles

Bioengineered 3D microvessels and complementary animal models reveal mechanisms of Trypanosoma congolense sequestration.

Porqueddu T, Zorrinho-Almeida M, De Niz M, Casas-Sanchez A, Introini V, Sanz Sender S Commun Biol. 2025; 8(1):321.

PMID: 40011598 PMC: 11865532. DOI: 10.1038/s42003-025-07739-z.


Evasive mechanisms of human VSG and PfEMP1 antigens with link to Vaccine scenario: a review.

Obi O, Obiezue R, Eze D, Adebote D J Parasit Dis. 2025; 49(1):13-28.

PMID: 39975623 PMC: 11833005. DOI: 10.1007/s12639-024-01740-9.


Investigation of induced vascular damage sheds insights into sequestration.

Silva Pereira S, Bras D, Porqueddu T, Nascimento A, De Niz M Cell Surf. 2023; 10:100113.

PMID: 37954640 PMC: 10632540. DOI: 10.1016/j.tcsw.2023.100113.


Pathogenicity and virulence of African trypanosomes: From laboratory models to clinically relevant hosts.

Morrison L, Steketee P, Tettey M, Matthews K Virulence. 2022; 14(1):2150445.

PMID: 36419235 DOI: 10.1080/21505594.2022.2150445.


VSGs Expressed during Natural T. b. gambiense Infection Exhibit Extensive Sequence Divergence and a Subspecies-Specific Bias towards Type B N-Terminal Domains.

So J, Sudlow S, Sayeed A, Grudda T, Deborggraeve S, Ngoyi D mBio. 2022; 13(6):e0255322.

PMID: 36354333 PMC: 9765701. DOI: 10.1128/mbio.02553-22.


References
1.
Giordani F, Morrison L, Rowan T, de Koning H, Barrett M . The animal trypanosomiases and their chemotherapy: a review. Parasitology. 2016; 143(14):1862-1889. PMC: 5142301. DOI: 10.1017/S0031182016001268. View

2.
Shaw A, Cecchi G, Wint G, Mattioli R, Robinson T . Mapping the economic benefits to livestock keepers from intervening against bovine trypanosomosis in Eastern Africa. Prev Vet Med. 2013; 113(2):197-210. DOI: 10.1016/j.prevetmed.2013.10.024. View

3.
Gardiner P . Recent studies of the biology of Trypanosoma vivax. Adv Parasitol. 1989; 28:229-317. DOI: 10.1016/s0065-308x(08)60334-6. View

4.
Osorio A, Madruga C, Desquesnes M, Soares C, Ribeiro L, da Costa S . Trypanosoma (Duttonella) vivax: its biology, epidemiology, pathogenesis, and introduction in the New World--a review. Mem Inst Oswaldo Cruz. 2008; 103(1):1-13. DOI: 10.1590/s0074-02762008000100001. View

5.
Morrison L, Vezza L, Rowan T, Hope J . Animal African Trypanosomiasis: Time to Increase Focus on Clinically Relevant Parasite and Host Species. Trends Parasitol. 2016; 32(8):599-607. DOI: 10.1016/j.pt.2016.04.012. View