» Articles » PMID: 32051405

Mahan Excitons in Room-temperature Methylammonium Lead Bromide Perovskites

Overview
Journal Nat Commun
Specialty Biology
Date 2020 Feb 14
PMID 32051405
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

In a seminal paper, Mahan predicted that excitonic bound states can still exist in a semiconductor at electron-hole densities above the insulator-to-metal Mott transition. However, no clear evidence for this exotic quasiparticle, dubbed Mahan exciton, exists to date at room temperature. In this work, we combine ultrafast broadband optical spectroscopy and advanced many-body calculations to reveal that organic-inorganic lead-bromide perovskites host Mahan excitons at room temperature. Persistence of the Wannier exciton peak and the enhancement of the above-bandgap absorption are observed at all achievable photoexcitation densities, well above the Mott density. This is supported by the solution of the semiconductor Bloch equations, which confirms that no sharp transition between the insulating and conductive phase occurs. Our results demonstrate the robustness of the bound states in a regime where exciton dissociation is otherwise expected, and offer promising perspectives in fundamental physics and in room-temperature applications involving high densities of charge carriers.

Citing Articles

Proximity-Induced Exchange Interaction and Prolonged Valley Lifetime in MoSe/CrSBr Van-Der-Waals Heterostructure with Orthogonal Spin Textures.

Beer A, Zollner K, Serati de Brito C, Faria Junior P, Parzefall P, Ghiasi T ACS Nano. 2024; 18(45):31044-31054.

PMID: 39466188 PMC: 11562783. DOI: 10.1021/acsnano.4c07336.


Band Gap Renormalization at Different Symmetry Points in Perovskites.

Wang L, Nughays R, Yin J, Shih C, Guo T, Mohammed O ACS Photonics. 2024; 11(6):2273-2281.

PMID: 38911840 PMC: 11191737. DOI: 10.1021/acsphotonics.4c00082.


Excited-State Dynamics of MAPbBr: Coexistence of Excitons and Free Charge Carriers at Ultrafast Times.

Droseros N, Ferdowsi P, Martinez E, Saliba M, Banerji N, Tsokkou D J Phys Chem C Nanomater Interfaces. 2024; 128(21):8637-8648.

PMID: 38835933 PMC: 11145650. DOI: 10.1021/acs.jpcc.3c08509.


Disentangling Thermal from Electronic Contributions in the Spectral Response of Photoexcited Perovskite Materials.

Wang L, Nughays R, Rossi T, Oppermann M, Ogieglo W, Bian T J Am Chem Soc. 2024; 146(8):5393-5401.

PMID: 38359303 PMC: 10910496. DOI: 10.1021/jacs.3c12832.


Transient High-Harmonic Spectroscopy in an Inorganic-Organic Lead Halide Perovskite.

van der Geest M, de Boer J, Murzyn K, Jurgens P, Ehrler B, Kraus P J Phys Chem Lett. 2023; 14(48):10810-10818.

PMID: 38015825 PMC: 10711791. DOI: 10.1021/acs.jpclett.3c02588.


References
1.
Olbright , Fu , Owyoung , Klem , BINDER , Galbraith I . cw and femtosecond optical nonlinearities of type-II quantum wells. Phys Rev Lett. 1991; 66(10):1358-1361. DOI: 10.1103/PhysRevLett.66.1358. View

2.
Grivickas P, Grivickas V, Linnros J . Excitonic absorption above the Mott transition in Si. Phys Rev Lett. 2003; 91(24):246401. DOI: 10.1103/PhysRevLett.91.246401. View

3.
Sekiguchi F, Mochizuki T, Kim C, Akiyama H, Pfeiffer L, West K . Anomalous Metal Phase Emergent on the Verge of an Exciton Mott Transition. Phys Rev Lett. 2017; 118(6):067401. DOI: 10.1103/PhysRevLett.118.067401. View

4.
Suzuki T, Shimano R . Time-resolved formation of excitons and electron-hole droplets in si studied using terahertz spectroscopy. Phys Rev Lett. 2009; 103(5):057401. DOI: 10.1103/PhysRevLett.103.057401. View

5.
Almand-Hunter A, Li H, Cundiff S, Mootz M, Kira M, Koch S . Quantum droplets of electrons and holes. Nature. 2014; 506(7489):471-5. DOI: 10.1038/nature12994. View