» Articles » PMID: 32043300

Optogenetic Control of Mitochondrial Protonmotive Force to Impact Cellular Stress Resistance

Overview
Journal EMBO Rep
Specialty Molecular Biology
Date 2020 Feb 12
PMID 32043300
Citations 23
Authors
Affiliations
Soon will be listed here.
Abstract

Mitochondrial respiration generates an electrochemical proton gradient across the mitochondrial inner membrane called protonmotive force (PMF) to drive diverse functions and synthesize ATP. Current techniques to manipulate the PMF are limited to its dissipation; yet, there is no precise and reversible method to increase the PMF. To address this issue, we aimed to use an optogenetic approach and engineered a mitochondria-targeted light-activated proton pump that we name mitochondria-ON (mtON) to selectively increase the PMF in Caenorhabditis elegans. Here we show that mtON photoactivation increases the PMF in a dose-dependent manner, supports ATP synthesis, increases resistance to mitochondrial toxins, and modulates energy-sensing behavior. Moreover, transient mtON activation during hypoxic preconditioning prevents the well-characterized adaptive response of hypoxia resistance. Our results show that optogenetic manipulation of the PMF is a powerful tool to modulate metabolism and cell signaling.

Citing Articles

Mitochondrial energy state controls AMPK-mediated foraging behavior in .

Vodickova A, Muller-Eigner A, Okoye C, Bischer A, Horn J, Koren S Sci Adv. 2024; 10(16):eadm8815.

PMID: 38630817 PMC: 11023558. DOI: 10.1126/sciadv.adm8815.


Phosphate starvation signaling increases mitochondrial membrane potential through respiration-independent mechanisms.

Ouyang Y, Jeong M, Cunningham C, Berg J, Toshniwal A, Hughes C Elife. 2024; 13.

PMID: 38251707 PMC: 10846858. DOI: 10.7554/eLife.84282.


Using light to drive energy transduction in metazoan aging.

Tiwary V, Galow A, Wojtovich A, Peleg S Trends Biochem Sci. 2023; 48(11):920-922.

PMID: 37704489 PMC: 10592090. DOI: 10.1016/j.tibs.2023.08.010.


Intermittent Theta Burst Stimulation Attenuates Cognitive Deficits and Alzheimer's Disease-Type Pathologies via ISCA1-Mediated Mitochondrial Modulation in APP/PS1 Mice.

Zhu Y, Huang H, Chen Z, Tao Y, Liao L, Gao S Neurosci Bull. 2023; 40(2):182-200.

PMID: 37578635 PMC: 10838862. DOI: 10.1007/s12264-023-01098-7.


Exploring Molecular Targets for Mitochondrial Therapies in Neurodegenerative Diseases.

Plascencia-Villa G, Perry G Int J Mol Sci. 2023; 24(15).

PMID: 37569861 PMC: 10419704. DOI: 10.3390/ijms241512486.


References
1.
Brennan J, Southworth R, Medina R, Davidson S, Duchen M, Shattock M . Mitochondrial uncoupling, with low concentration FCCP, induces ROS-dependent cardioprotection independent of KATP channel activation. Cardiovasc Res. 2006; 72(2):313-21. DOI: 10.1016/j.cardiores.2006.07.019. View

2.
Apfeld J, OConnor G, McDonagh T, DiStefano P, Curtis R . The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev. 2004; 18(24):3004-9. PMC: 535911. DOI: 10.1101/gad.1255404. View

3.
Garrido C, Galluzzi L, Brunet M, Puig P, Didelot C, Kroemer G . Mechanisms of cytochrome c release from mitochondria. Cell Death Differ. 2006; 13(9):1423-33. DOI: 10.1038/sj.cdd.4401950. View

4.
Jeon S . Regulation and function of AMPK in physiology and diseases. Exp Mol Med. 2016; 48(7):e245. PMC: 4973318. DOI: 10.1038/emm.2016.81. View

5.
Shabalina I, Nedergaard J . Mitochondrial ('mild') uncoupling and ROS production: physiologically relevant or not?. Biochem Soc Trans. 2011; 39(5):1305-9. DOI: 10.1042/BST0391305. View