» Articles » PMID: 32014064

Pulsed Electromagnetic Fields Potentiate the Paracrine Function of Mesenchymal Stem Cells for Cartilage Regeneration

Overview
Publisher Biomed Central
Date 2020 Feb 5
PMID 32014064
Citations 39
Authors
Affiliations
Soon will be listed here.
Abstract

Background: The mesenchymal stem cell (MSC) secretome, via the combined actions of its plethora of biologically active factors, is capable of orchestrating the regenerative responses of numerous tissues by both eliciting and amplifying biological responses within recipient cells. MSCs are "environmentally responsive" to local micro-environmental cues and biophysical perturbations, influencing their differentiation as well as secretion of bioactive factors. We have previously shown that exposures of MSCs to pulsed electromagnetic fields (PEMFs) enhanced MSC chondrogenesis. Here, we investigate the influence of PEMF exposure over the paracrine activity of MSCs and its significance to cartilage regeneration.

Methods: Conditioned medium (CM) was generated from MSCs subjected to either 3D or 2D culturing platforms, with or without PEMF exposure. The paracrine effects of CM over chondrocytes and MSC chondrogenesis, migration and proliferation, as well as the inflammatory status and induced apoptosis in chondrocytes and MSCs was assessed.

Results: We show that benefits of magnetic field stimulation over MSC-derived chondrogenesis can be partly ascribed to its ability to modulate the MSC secretome. MSCs cultured on either 2D or 3D platforms displayed distinct magnetic sensitivities, whereby MSCs grown in 2D or 3D platforms responded most favorably to PEMF exposure at 2 mT and 3 mT amplitudes, respectively. Ten minutes of PEMF exposure was sufficient to substantially augment the chondrogenic potential of MSC-derived CM generated from either platform. Furthermore, PEMF-induced CM was capable of enhancing the migration of chondrocytes and MSCs as well as mitigating cellular inflammation and apoptosis.

Conclusions: The findings reported here demonstrate that PEMF stimulation is capable of modulating the paracrine function of MSCs for the enhancement and re-establishment of cartilage regeneration in states of cellular stress. The PEMF-induced modulation of the MSC-derived paracrine function for directed biological responses in recipient cells or tissues has broad clinical and practical ramifications with high translational value across numerous clinical applications.

Citing Articles

Research status of biomaterials based on physical signals for bone injury repair.

Sun Q, Li C, Liu Q, Zhang Y, Hu B, Feng Q Regen Ther. 2025; 28:544-557.

PMID: 40027992 PMC: 11872413. DOI: 10.1016/j.reth.2025.01.025.


Advancing Neuroscience and Therapy: Insights into Genetic and Non-Genetic Neuromodulation Approaches.

Zhi W, Li Y, Wang L, Hu X Cells. 2025; 14(2).

PMID: 39851550 PMC: 11763439. DOI: 10.3390/cells14020122.


The clinical effects of pulsed electromagnetic field therapy for the management of chronic ankle instability: a study protocol for a double-blind randomized controlled trial.

Chia C, Fu S, He X, Cheng Y, Franco-Obregon A, Hua Y Trials. 2024; 25(1):808.

PMID: 39627831 PMC: 11613907. DOI: 10.1186/s13063-024-08639-z.


Short-term Effects of Pulsed Electromagnetic Field Therapy for Achilles Tendinopathy: A Randomized Controlled Trial.

Ko V, Chen S, He X, Fu S, Franco-Obregon A, Yung P Orthop J Sports Med. 2024; 12(11):23259671241284772.

PMID: 39534390 PMC: 11555732. DOI: 10.1177/23259671241284772.


Molecular Signaling Pathways and MicroRNAs in Bone Remodeling: A Narrative Review.

Singh M, Singh P, Singh B, Sharma K, Kumar N, Singh D Diseases. 2024; 12(10).

PMID: 39452495 PMC: 11507001. DOI: 10.3390/diseases12100252.


References
1.
Elsaid K, Zhang L, Shaman Z, Patel C, Schmidt T, Jay G . The impact of early intra-articular administration of interleukin-1 receptor antagonist on lubricin metabolism and cartilage degeneration in an anterior cruciate ligament transection model. Osteoarthritis Cartilage. 2014; 23(1):114-21. PMC: 4275352. DOI: 10.1016/j.joca.2014.09.006. View

2.
Maumus M, Jorgensen C, Noel D . Mesenchymal stem cells in regenerative medicine applied to rheumatic diseases: role of secretome and exosomes. Biochimie. 2013; 95(12):2229-34. DOI: 10.1016/j.biochi.2013.04.017. View

3.
Ongaro A, Pellati A, Setti S, Masieri F, Aquila G, Fini M . Electromagnetic fields counteract IL-1β activity during chondrogenesis of bovine mesenchymal stem cells. J Tissue Eng Regen Med. 2012; 9(12):E229-38. DOI: 10.1002/term.1671. View

4.
Kusuma G, Carthew J, Lim R, Frith J . Effect of the Microenvironment on Mesenchymal Stem Cell Paracrine Signaling: Opportunities to Engineer the Therapeutic Effect. Stem Cells Dev. 2017; 26(9):617-631. DOI: 10.1089/scd.2016.0349. View

5.
Zhang S, Teo K, Chuah S, Lai R, Lim S, Toh W . MSC exosomes alleviate temporomandibular joint osteoarthritis by attenuating inflammation and restoring matrix homeostasis. Biomaterials. 2019; 200:35-47. DOI: 10.1016/j.biomaterials.2019.02.006. View