» Articles » PMID: 31986227

A Comparative Histological Study of the Osteoderms in the Lizards Heloderma Suspectum (Squamata: Helodermatidae) and Varanus Komodoensis (Squamata: Varanidae)

Overview
Journal J Anat
Date 2020 Jan 28
PMID 31986227
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

We describe the histological appearance of the osteoderms (ODs) of Heloderma suspectum and Varanus komodoensis using multiple staining and microscopy techniques to yield information about their morphology and development. Histological analysis showed that the ODs of H. suspectum are composed of three main tissue types, a superficial layer, herein identified as osteodermine, capping a base composed of Sharpey-fibre bone and lamellar bone rich in secondary osteons (Haversian bone tissue). In contrast, ODs in V. komodoensis are composed of a core of woven bone surrounded by parallel-fibred bone without a capping tissue. Thus, in these two species, ODs differ both in terms of their structural composition and in details of their skeletogenesis. The histology of the mineralised tissues observed in these two reptile taxa provides insights into the mechanism of formation of lizard ODs and presents a direct comparison of the histological properties between the ODs of the two species. These data allow greater understanding of the comparative histological appearance of the dermal bones of lizards and highlight their structural diversity.

Citing Articles

Hidden Armour: The Passive Protective Function of Caudal Osteoderms in Snakes.

Frydlova P, Dudak J, Tymlova V, Zemlicka J, Moravec J, Frynta D J Morphol. 2025; 286(2):e70034.

PMID: 39985334 PMC: 11846078. DOI: 10.1002/jmor.70034.


Biological Significance of the Komodo Dragon's Tail (, Varanidae).

Tomanska A, Stawinoga M, Szturo K, Styczynska M, Kleckowska-Nawrot J, Janeczek M Animals (Basel). 2024; 14(15).

PMID: 39123668 PMC: 11311070. DOI: 10.3390/ani14152142.


Osteoderm Development during the Regeneration Process in Blyth, 1854 (Scincidae, Sauria, Squamata).

Cherepanov G, Gordeev D, Melnikov D, Ananjeva N J Dev Biol. 2023; 11(2).

PMID: 37367476 PMC: 10299357. DOI: 10.3390/jdb11020022.


Female-female aggression in the Gila monster ().

Schuett G, Peterson K, Powell A, Taylor J, Alexander J, Lappin A R Soc Open Sci. 2023; 10(5):221466.

PMID: 37181791 PMC: 10170349. DOI: 10.1098/rsos.221466.


Fleas and lesions in armadillo osteoderms.

Boyde A, Mills D, Abba A, Ezquiaga M J Anat. 2023; 242(6):1029-1036.

PMID: 36862639 PMC: 10184550. DOI: 10.1111/joa.13842.


References
1.
Vickaryous M, Sire J . The integumentary skeleton of tetrapods: origin, evolution, and development. J Anat. 2009; 214(4):441-64. PMC: 2736118. DOI: 10.1111/j.1469-7580.2008.01043.x. View

2.
de Buffrenil V, Sire J, Rage J . The histological structure of glyptosaurine osteoderms (Squamata: Anguidae), and the problem of osteoderm development in squamates. J Morphol. 2010; 271(6):729-37. DOI: 10.1002/jmor.10829. View

3.
PUCHTLER H, Waldrop F . On the mechanism of Verhoeff's elastica stain: a convenient stain for myelin sheaths. Histochemistry. 1979; 62(3):233-47. DOI: 10.1007/BF00508352. View

4.
Stump C . The Histogenesis of Bone. J Anat. 1925; 59(Pt 2):136-54. PMC: 1249833. View

5.
Dubansky B, Dubansky B . Natural development of dermal ectopic bone in the american alligator (Alligator mississippiensis) resembles heterotopic ossification disorders in humans. Anat Rec (Hoboken). 2017; 301(1):56-76. DOI: 10.1002/ar.23682. View