» Articles » PMID: 31971854

Mass Spectrometry Proteomics Reveals a Function for Mammalian CALCOCO1 in MTOR-regulated Selective Autophagy

Abstract

Macroautophagy/autophagy is suppressed by MTOR (mechanistic target of rapamycin kinase) and is an anticancer target under active investigation. Yet, MTOR-regulated autophagy remains incompletely mapped. We used proteomic profiling to identify proteins in the MTOR-autophagy axis. Wild-type (WT) mouse cell lines and cell lines lacking individual autophagy genes ( or ) were treated with an MTOR inhibitor to induce autophagy and cultured in media with either glucose or galactose. Mass spectrometry proteome profiling revealed an elevation of known autophagy proteins and candidates for new autophagy components, including CALCOCO1 (calcium binding and coiled-coil domain protein 1). We show that CALCOCO1 physically interacts with MAP1LC3C, a key protein in the machinery of autophagy. Genetic deletion of disrupted autophagy of the endoplasmic reticulum (reticulophagy). Together, these results reveal a role for CALCOCO1 in MTOR-regulated selective autophagy. More generally, the resource generated by this work provides a foundation for establishing links between the MTOR-autophagy axis and proteins not previously linked to this pathway. ATG: autophagy-related; CALCOCO1: calcium binding and coiled-coil domain protein 1; CALCOCO2/NDP52: calcium binding and coiled-coil domain protein 2; CLIR: MAP1LC3C-interacting region; CQ: chloroquine; KO: knockout; LIR: MAP1LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MEF: mouse embryonic fibroblast; MLN: MLN0128 ATP-competitive MTOR kinase inhibitor; MTOR: mechanistic target of rapamycin kinase; reticulophagy: selective autophagy of the endoplasmic reticulum; TAX1BP1/CALCOCO3: TAX1 binding protein 1; ULK: unc 51-like autophagy activating kinase; WT: wild-type.

Citing Articles

Visualizing ER-phagy and ER architecture in vivo.

Sang Y, Li B, Su T, Zhan H, Xiong Y, Huang Z J Cell Biol. 2024; 223(12).

PMID: 39556340 PMC: 11575016. DOI: 10.1083/jcb.202408061.


Golgiphagy: a novel selective autophagy to the fore.

Chen Y, Wu Y, Tian X, Shao G, Lin Q, Sun A Cell Biosci. 2024; 14(1):130.

PMID: 39438975 PMC: 11495120. DOI: 10.1186/s13578-024-01311-8.


Reticulophagy and viral infection.

Wilson A, McCormick C Autophagy. 2024; 21(1):3-20.

PMID: 39394962 PMC: 11702952. DOI: 10.1080/15548627.2024.2414424.


Identification and functional analysis of rare HECTD1 missense variants in human neural tube defects.

Oxman E, Li H, Wang H, Zohn I Hum Genet. 2024; 143(3):263-277.

PMID: 38451291 PMC: 11043113. DOI: 10.1007/s00439-024-02647-4.


VPS13C regulates phospho-Rab10-mediated lysosomal function in human dopaminergic neurons.

Schrder L, Peng W, Gao G, Wong Y, Schwake M, Krainc D J Cell Biol. 2024; 223(5).

PMID: 38358348 PMC: 10868123. DOI: 10.1083/jcb.202304042.


References
1.
Levine B, Kroemer G . Biological Functions of Autophagy Genes: A Disease Perspective. Cell. 2019; 176(1-2):11-42. PMC: 6347410. DOI: 10.1016/j.cell.2018.09.048. View

2.
Morava E . Galactose supplementation in phosphoglucomutase-1 deficiency; review and outlook for a novel treatable CDG. Mol Genet Metab. 2014; 112(4):275-9. PMC: 4180034. DOI: 10.1016/j.ymgme.2014.06.002. View

3.
Chen C, Okayama H . Calcium phosphate-mediated gene transfer: a highly efficient transfection system for stably transforming cells with plasmid DNA. Biotechniques. 1988; 6(7):632-8. View

4.
Mochida K, Oikawa Y, Kimura Y, Kirisako H, Hirano H, Ohsumi Y . Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus. Nature. 2015; 522(7556):359-62. DOI: 10.1038/nature14506. View

5.
von der Heyde S, Wagner S, Czerny A, Nietert M, Ludewig F, Salinas-Riester G . mRNA profiling reveals determinants of trastuzumab efficiency in HER2-positive breast cancer. PLoS One. 2015; 10(2):e0117818. PMC: 4339844. DOI: 10.1371/journal.pone.0117818. View