» Articles » PMID: 31959965

Structural Equilibrium Underlying Ligand-dependent Activation of β-adrenoreceptor

Overview
Journal Nat Chem Biol
Date 2020 Jan 22
PMID 31959965
Citations 28
Authors
Affiliations
Soon will be listed here.
Abstract

G-protein-coupled receptors (GPCRs) are seven-transmembrane proteins mediating cellular signals in response to extracellular stimuli. Although three-dimensional structures showcase snapshots that can be sampled in the process and nuclear magnetic resonance detects conformational equilibria, the mechanism by which agonist-activated GPCRs interact with various effectors remains elusive. Here, we used paramagnetic nuclear magnetic resonance for leucine amide resonances to visualize the structure of β-adrenoreceptor in the full agonist-bound state, without thermostabilizing mutations abolishing its activity. The structure exhibited a unique orientation of the intracellular half of the transmembrane helix 6, forming a cluster of G-protein-interacting residues. Furthermore, analyses of efficacy-dependent chemical shifts of the residues near the pivotal PIF microswitch identified an equilibrium among three conformations, including one responsible for the varied signal level in each ligand-bound state. Together, these results provide a structural basis for the dynamic activation of GPCRs and shed light on GPCR-mediated signal transduction.

Citing Articles

Intracellular Pocket Conformations Determine Signaling Efficacy through the μ Opioid Receptor.

Cooper D, DePaolo-Boisvert J, Nicholson S, Gad B, Minh D J Chem Inf Model. 2025; 65(3):1465-1475.

PMID: 39824514 PMC: 11817682. DOI: 10.1021/acs.jcim.4c01437.


Intracellular pocket conformations determine signaling efficacy through the opioid receptor.

Cooper D, DePaolo-Boisvert J, Nicholson S, Gad B, Minh D bioRxiv. 2024; .

PMID: 39677660 PMC: 11642773. DOI: 10.1101/2024.04.03.588021.


NMR spectroscopy reveals insights into mechanisms of GPCR signaling.

Silva L, Wijesekara A, Eddy M Trends Biochem Sci. 2024; 50(1):84-85.

PMID: 39523165 PMC: 11698642. DOI: 10.1016/j.tibs.2024.10.007.


Coupling and Activation of the β1 Adrenergic Receptor - The Role of the Third Intracellular Loop.

Qiu X, Chao K, Song S, Wang Y, Chen Y, Rouse S J Am Chem Soc. 2024; .

PMID: 39359104 PMC: 11487556. DOI: 10.1021/jacs.4c11250.


Membrane mimetic-dependence of GPCR energy landscapes.

Thakur N, Ray A, Jin B, Afsharian N, Lyman E, Gao Z Structure. 2024; 32(5):523-535.e5.

PMID: 38401537 PMC: 11069452. DOI: 10.1016/j.str.2024.01.013.


References
1.
Rosenbaum D, Rasmussen S, Kobilka B . The structure and function of G-protein-coupled receptors. Nature. 2009; 459(7245):356-63. PMC: 3967846. DOI: 10.1038/nature08144. View

2.
Flock T, Hauser A, Lund N, Gloriam D, Balaji S, Babu M . Selectivity determinants of GPCR-G-protein binding. Nature. 2017; 545(7654):317-322. PMC: 5846738. DOI: 10.1038/nature22070. View

3.
Shimada I, Ueda T, Kofuku Y, Eddy M, Wuthrich K . GPCR drug discovery: integrating solution NMR data with crystal and cryo-EM structures. Nat Rev Drug Discov. 2018; 18(1):59-82. PMC: 6681916. DOI: 10.1038/nrd.2018.180. View

4.
Xiang J, Chun E, Liu C, Jing L, Al-Sahouri Z, Zhu L . Successful Strategies to Determine High-Resolution Structures of GPCRs. Trends Pharmacol Sci. 2016; 37(12):1055-1069. DOI: 10.1016/j.tips.2016.09.009. View

5.
Trzaskowski B, Latek D, Yuan S, Ghoshdastider U, Debinski A, Filipek S . Action of molecular switches in GPCRs--theoretical and experimental studies. Curr Med Chem. 2012; 19(8):1090-109. PMC: 3343417. DOI: 10.2174/092986712799320556. View