» Articles » PMID: 29176642

Insight into Partial Agonism by Observing Multiple Equilibria for Ligand-bound and G-mimetic Nanobody-bound β-adrenergic Receptor

Overview
Journal Nat Commun
Specialty Biology
Date 2017 Nov 28
PMID 29176642
Citations 47
Authors
Affiliations
Soon will be listed here.
Abstract

A complex conformational energy landscape determines G-protein-coupled receptor (GPCR) signalling via intracellular binding partners (IBPs), e.g., G and β-arrestin. Using C methyl methionine NMR for the β-adrenergic receptor, we identify ligand efficacy-dependent equilibria between an inactive and pre-active state and, in complex with G-mimetic nanobody, between more and less active ternary complexes. Formation of a basal activity complex through ligand-free nanobody-receptor interaction reveals structural differences on the cytoplasmic receptor side compared to the full agonist-bound nanobody-coupled form, suggesting that ligand-induced variations in G-protein interaction underpin partial agonism. Significant differences in receptor dynamics are observed ranging from rigid nanobody-coupled states to extensive μs-to-ms timescale dynamics when bound to a full agonist. We suggest that the mobility of the full agonist-bound form primes the GPCR to couple to IBPs. On formation of the ternary complex, ligand efficacy determines the quality of the interaction between the rigidified receptor and an IBP and consequently the signalling level.

Citing Articles

Functional dynamics of G protein-coupled receptors reveal new routes for drug discovery.

Conflitti P, Lyman E, Sansom M, Hildebrand P, Gutierrez-de-Teran H, Carloni P Nat Rev Drug Discov. 2025; .

PMID: 39747671 DOI: 10.1038/s41573-024-01083-3.


Ligand-induced conformational changes in the β1-adrenergic receptor revealed by hydrogen-deuterium exchange mass spectrometry.

Toporowska J, Kapoor P, Musgaard M, Gherbi K, Sengmany K, Qu F Nat Commun. 2024; 15(1):8993.

PMID: 39424782 PMC: 11489754. DOI: 10.1038/s41467-024-53161-0.


Coupling and Activation of the β1 Adrenergic Receptor - The Role of the Third Intracellular Loop.

Qiu X, Chao K, Song S, Wang Y, Chen Y, Rouse S J Am Chem Soc. 2024; .

PMID: 39359104 PMC: 11487556. DOI: 10.1021/jacs.4c11250.


Structural Insights into Partial Activation of the Prototypic G Protein-Coupled Adenosine A Receptor.

Claff T, Mahardhika A, Vaassen V, Schlegel J, Vielmuth C, Weisse R ACS Pharmacol Transl Sci. 2024; 7(5):1415-1425.

PMID: 38751633 PMC: 11091970. DOI: 10.1021/acsptsci.4c00051.


Structural and dynamic insights into the activation of the μ-opioid receptor by an allosteric modulator.

Kaneko S, Imai S, Uchikubo-Kamo T, Hisano T, Asao N, Shirouzu M Nat Commun. 2024; 15(1):3544.

PMID: 38740791 PMC: 11091225. DOI: 10.1038/s41467-024-47792-6.


References
1.
Hyberts S, Takeuchi K, Wagner G . Poisson-gap sampling and forward maximum entropy reconstruction for enhancing the resolution and sensitivity of protein NMR data. J Am Chem Soc. 2010; 132(7):2145-7. PMC: 2825045. DOI: 10.1021/ja908004w. View

2.
Kruse A, Ring A, Manglik A, Hu J, Hu K, Eitel K . Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature. 2013; 504(7478):101-6. PMC: 4020789. DOI: 10.1038/nature12735. View

3.
Rasmussen S, DeVree B, Zou Y, Kruse A, Chung K, Kobilka T . Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature. 2011; 477(7366):549-55. PMC: 3184188. DOI: 10.1038/nature10361. View

4.
Rosenbaum D, Rasmussen S, Kobilka B . The structure and function of G-protein-coupled receptors. Nature. 2009; 459(7245):356-63. PMC: 3967846. DOI: 10.1038/nature08144. View

5.
Cooke R, Brown A, Marshall F, Mason J . Structures of G protein-coupled receptors reveal new opportunities for drug discovery. Drug Discov Today. 2015; 20(11):1355-64. DOI: 10.1016/j.drudis.2015.08.003. View