» Articles » PMID: 31953206

Controlling Biofilms Using Synthetic Biology Approaches

Overview
Journal Biotechnol Adv
Date 2020 Jan 19
PMID 31953206
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

Bacterial biofilms are formed by the complex but ordered regulation of intra- or inter-cellular communication, environmentally responsive gene expression, and secretion of extracellular polymeric substances. Given the robust nature of biofilms due to the non-growing nature of biofilm bacteria and the physical barrier provided by the extracellular matrix, eradicating biofilms is a very difficult task to accomplish with conventional antibiotic or disinfectant treatments. Synthetic biology holds substantial promise for controlling biofilms by improving and expanding existing biological tools, introducing novel functions to the system, and re-conceptualizing gene regulation. This review summarizes synthetic biology approaches used to eradicate biofilms via protein engineering of biofilm-related enzymes, utilization of synthetic genetic circuits, and the development of functional living agents. Synthetic biology also enables beneficial applications of biofilms through the production of biomaterials and patterning biofilms with specific temporal and spatial structures. Advances in synthetic biology will add novel biofilm functionalities for future therapeutic, biomanufacturing, and environmental applications.

Citing Articles

Microbial enzymes as powerful natural anti-biofilm candidates.

Al-Madboly L, Aboulmagd A, El-Salam M, Kushkevych I, El-Morsi R Microb Cell Fact. 2024; 23(1):343.

PMID: 39710670 PMC: 11664836. DOI: 10.1186/s12934-024-02610-y.


Deconstructing synthetic biology across scales: a conceptual approach for training synthetic biologists.

Karim A, Brown D, Archuleta C, Grannan S, Aristilde L, Goyal Y Nat Commun. 2024; 15(1):5425.

PMID: 38926339 PMC: 11208543. DOI: 10.1038/s41467-024-49626-x.


Application of biofilm dispersion-based nanoparticles in cutting off reinfection.

Li X, Lin S, Wang Y, Chen Y, Zhang W, Shu G Appl Microbiol Biotechnol. 2024; 108(1):386.

PMID: 38896257 PMC: 11186951. DOI: 10.1007/s00253-024-13120-7.


Anti-Biofilm Strategies: A Focused Review on Innovative Approaches.

Iaconis A, De Plano L, Caccamo A, Franco D, Conoci S Microorganisms. 2024; 12(4).

PMID: 38674584 PMC: 11052202. DOI: 10.3390/microorganisms12040639.


Biofilm formation and manipulation with optical tweezers.

Camba C, Walter-Lakes B, Digal P, Taheri-Araghi S, Bezryadina A Biomed Opt Express. 2024; 15(2):1181-1191.

PMID: 38404331 PMC: 10890877. DOI: 10.1364/BOE.510836.


References
1.
Sillankorva S, Neubauer P, Azeredo J . Phage control of dual species biofilms of Pseudomonas fluorescens and Staphylococcus lentus. Biofouling. 2010; 26(5):567-75. DOI: 10.1080/08927014.2010.494251. View

2.
Mah T, OToole G . Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001; 9(1):34-9. DOI: 10.1016/s0966-842x(00)01913-2. View

3.
McKay R, Ghodasra M, Schardt J, Quan D, Pottash A, Shang W . A platform of genetically engineered bacteria as vehicles for localized delivery of therapeutics: Toward applications for Crohn's disease. Bioeng Transl Med. 2018; 3(3):209-221. PMC: 6195910. DOI: 10.1002/btm2.10113. View

4.
Kolodkin-Gal I, Romero D, Cao S, Clardy J, Kolter R, Losick R . D-amino acids trigger biofilm disassembly. Science. 2010; 328(5978):627-9. PMC: 2921573. DOI: 10.1126/science.1188628. View

5.
Shen Y, Koller T, Kreikemeyer B, Nelson D . Rapid degradation of Streptococcus pyogenes biofilms by PlyC, a bacteriophage-encoded endolysin. J Antimicrob Chemother. 2013; 68(8):1818-24. DOI: 10.1093/jac/dkt104. View