» Articles » PMID: 31925492

Radiomics of Hepatocellular Carcinoma

Overview
Publisher Springer
Date 2020 Jan 12
PMID 31925492
Citations 38
Authors
Affiliations
Soon will be listed here.
Abstract

The diagnosis of hepatocellular carcinoma relies largely on non-invasive imaging, and is well suited for radiomics analysis. Radiomics is an emerging method for quantification of tumor heterogeneity by mathematically analyzing the spatial distribution and relationships of gray levels in medical images. The published studies on radiomics analysis of HCC provide encouraging data demonstrating potential utility for prediction of tumor biology, molecular profiles, post-therapy response, and outcome. The combination of radiomics data and clinical/laboratory information provides added value in many studies. Radiomics is a multi-step process that requires optimization and standardization, the development of semi-automated or automated segmentation methods, robust data quality control, and refinement of algorithms and modeling approaches for high-throughput data analysis. While radiomics remains largely in the research setting, the strong associations of predictive models and nomograms with certain pathologic, molecular, and immune markers with tumor aggressiveness and patient outcomes, provide great potential for clinical applications to inform optimized treatment strategies and patient prognosis.

Citing Articles

Adrenal Mass Evaluation: Suspicious Radiological Signs of Malignancy.

Grazzini G, Pradella S, De Litteris F, Galluzzo A, Anichini M, Treballi F Cancers (Basel). 2025; 17(5).

PMID: 40075696 PMC: 11899669. DOI: 10.3390/cancers17050849.


Application of artificial intelligence in the diagnosis of hepatocellular carcinoma.

Koh B, Danpanichkul P, Wang M, Tan D, Ng C eGastroenterology. 2025; 1(2):e100002.

PMID: 39944000 PMC: 11770452. DOI: 10.1136/egastro-2023-100002.


Predicting treatment responses using magnetic resonance imaging-based radiomics in hepatocellular carcinoma patients undergoing transarterial radioembolization.

Sozutok S, Piskin F, Balli H, Yucel S, Aikimbaev K Rev Assoc Med Bras (1992). 2024; 70(11):e20240721.

PMID: 39630762 PMC: 11639522. DOI: 10.1590/1806-9282.20240721.


Advancing Hepatocellular Carcinoma Management Through Peritumoral Radiomics: Enhancing Diagnosis, Treatment, and Prognosis.

Huang Y, Qian H J Hepatocell Carcinoma. 2024; 11:2159-2168.

PMID: 39525830 PMC: 11546143. DOI: 10.2147/JHC.S493227.


CT-based radiomics for predicting Ki-67 expression in lung cancer: a systematic review and meta-analysis.

Luo X, Zheng R, Zhang J, He J, Luo W, Jiang Z Front Oncol. 2024; 14:1329801.

PMID: 38384802 PMC: 10879429. DOI: 10.3389/fonc.2024.1329801.


References
1.
Ryerson A, Eheman C, Altekruse S, Ward J, Jemal A, Sherman R . Annual Report to the Nation on the Status of Cancer, 1975-2012, featuring the increasing incidence of liver cancer. Cancer. 2016; 122(9):1312-37. PMC: 4840031. DOI: 10.1002/cncr.29936. View

2.
Cartier V, Aube C . Diagnosis of hepatocellular carcinoma. Diagn Interv Imaging. 2014; 95(7-8):709-19. DOI: 10.1016/j.diii.2014.06.004. View

3.
Llovet J, Villanueva A, Lachenmayer A, Finn R . Advances in targeted therapies for hepatocellular carcinoma in the genomic era. Nat Rev Clin Oncol. 2015; 12(8):436. DOI: 10.1038/nrclinonc.2015.121. View

4.
Llovet J, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc J . Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008; 359(4):378-90. DOI: 10.1056/NEJMoa0708857. View

5.
Villanueva A, Hoshida Y, Toffanin S, Lachenmayer A, Alsinet C, Savic R . New strategies in hepatocellular carcinoma: genomic prognostic markers. Clin Cancer Res. 2010; 16(19):4688-94. PMC: 3395071. DOI: 10.1158/1078-0432.CCR-09-1811. View