» Articles » PMID: 27269645

Applications and Limitations of Radiomics

Overview
Journal Phys Med Biol
Publisher IOP Publishing
Date 2016 Jun 9
PMID 27269645
Citations 521
Authors
Affiliations
Soon will be listed here.
Abstract

Radiomics is an emerging field in quantitative imaging that uses advanced imaging features to objectively and quantitatively describe tumour phenotypes. Radiomic features have recently drawn considerable interest due to its potential predictive power for treatment outcomes and cancer genetics, which may have important applications in personalized medicine. In this technical review, we describe applications and challenges of the radiomic field. We will review radiomic application areas and technical issues, as well as proper practices for the designs of radiomic studies.

Citing Articles

Radiomics in Dermatological Optical Coherence Tomography (OCT): Feature Repeatability, Reproducibility, and Integration into Diagnostic Models in a Prospective Study.

Widaatalla Y, Wolswijk T, Khan M, Halilaj I, Mosterd K, Woodruff H Cancers (Basel). 2025; 17(5).

PMID: 40075619 PMC: 11899706. DOI: 10.3390/cancers17050768.


Potential of Radiomics, Dosiomics, and Dose Volume Histograms for Tumor Response Prediction in Hepatocellular Carcinoma following Y-SIRT.

Mansouri Z, Salimi Y, Hajianfar G, Knappe L, Wolf N, Xhepa G Mol Imaging Biol. 2025; .

PMID: 40064820 DOI: 10.1007/s11307-025-01992-8.


Development and validation of a robust MRI-based nomogram incorporating radiomics and deep features for preoperative glioma grading: a multi-center study.

Bijari S, Rezaeijo S, Sayfollahi S, Rahimnezhad A, Heydarheydari S Quant Imaging Med Surg. 2025; 15(2):1125-1138.

PMID: 39995745 PMC: 11847178. DOI: 10.21037/qims-24-1543.


Radiomic Fingerprinting of the Peritumoral Edema in Brain Tumors.

Azemi G, Ieva A Cancers (Basel). 2025; 17(3).

PMID: 39941846 PMC: 11815925. DOI: 10.3390/cancers17030478.


Modernizing Neuro-Oncology: The Impact of Imaging, Liquid Biopsies, and AI on Diagnosis and Treatment.

Rafanan J, Ghani N, Kazemeini S, Nadeem-Tariq A, Shih R, Vida T Int J Mol Sci. 2025; 26(3).

PMID: 39940686 PMC: 11817476. DOI: 10.3390/ijms26030917.


References
1.
Mu W, Chen Z, Liang Y, Shen W, Yang F, Dai R . Staging of cervical cancer based on tumor heterogeneity characterized by texture features on (18)F-FDG PET images. Phys Med Biol. 2015; 60(13):5123-39. DOI: 10.1088/0031-9155/60/13/5123. View

2.
McNitt-Gray M, Hart E, Wyckoff N, Sayre J, Goldin J, Aberle D . A pattern classification approach to characterizing solitary pulmonary nodules imaged on high resolution CT: preliminary results. Med Phys. 1999; 26(6):880-8. DOI: 10.1118/1.598603. View

3.
Diehn M, Nardini C, Wang D, McGovern S, Jayaraman M, Liang Y . Identification of noninvasive imaging surrogates for brain tumor gene-expression modules. Proc Natl Acad Sci U S A. 2008; 105(13):5213-8. PMC: 2278224. DOI: 10.1073/pnas.0801279105. View

4.
Marusyk A, Almendro V, Polyak K . Intra-tumour heterogeneity: a looking glass for cancer?. Nat Rev Cancer. 2012; 12(5):323-34. DOI: 10.1038/nrc3261. View

5.
Hatt M, Majdoub M, Vallieres M, Tixier F, Rest C, Groheux D . 18F-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort. J Nucl Med. 2014; 56(1):38-44. DOI: 10.2967/jnumed.114.144055. View