» Articles » PMID: 31901448

The SUMO Ligase Su(var)2-10 Controls Hetero- and Euchromatic Gene Expression Via Establishing H3K9 Trimethylation and Negative Feedback Regulation

Overview
Journal Mol Cell
Publisher Cell Press
Specialty Cell Biology
Date 2020 Jan 6
PMID 31901448
Citations 23
Authors
Affiliations
Soon will be listed here.
Abstract

Сhromatin is critical for genome compaction and gene expression. On a coarse scale, the genome is divided into euchromatin, which harbors the majority of genes and is enriched in active chromatin marks, and heterochromatin, which is gene-poor but repeat-rich. The conserved molecular hallmark of heterochromatin is the H3K9me3 modification, which is associated with gene silencing. We found that in Drosophila, deposition of most of the H3K9me3 mark depends on SUMO and the SUMO ligase Su(var)2-10, which recruits the histone methyltransferase complex SetDB1/Wde. In addition to repressing repeats, H3K9me3 influences expression of both hetero- and euchromatic host genes. High H3K9me3 levels in heterochromatin are required to suppress spurious transcription and ensure proper gene expression. In euchromatin, a set of conserved genes is repressed by Su(var)2-10/SetDB1-induced H3K9 trimethylation, ensuring tissue-specific gene expression. Several components of heterochromatin are themselves repressed by this pathway, providing a negative feedback mechanism to ensure chromatin homeostasis.

Citing Articles

SUMO-mediated regulation of H3K4me3 reader SET-26 controls germline development in C. elegans.

Carvalho C, Abu-Shach U, Raju A, Vershinin Z, Levy D, Boxem M PLoS Biol. 2025; 23(1):e3002980.

PMID: 39761316 PMC: 11703099. DOI: 10.1371/journal.pbio.3002980.


Somatic piRNA and PIWI-mediated post-transcriptional gene regulation in stem cells and disease.

Patel M, Jiang Y, Kakumani P Front Cell Dev Biol. 2024; 12:1495035.

PMID: 39717847 PMC: 11663942. DOI: 10.3389/fcell.2024.1495035.


H3K14ac facilitates the reinstallation of constitutive heterochromatin in early embryos by engaging Eggless/SetDB1.

Tang R, Zhou M, Chen Y, Jiang Z, Fan X, Zhang J Proc Natl Acad Sci U S A. 2024; 121(33):e2321859121.

PMID: 39437264 PMC: 11331121. DOI: 10.1073/pnas.2321859121.


Transposon and Transgene Tribulations in Mosquitoes: A Perspective of piRNA Proportions.

Lau N, Macias V DNA (Basel). 2024; 4(2):104-128.

PMID: 39076684 PMC: 11286205. DOI: 10.3390/dna4020006.


piRNA associates with immune diseases.

Jiang M, Hong X, Gao Y, Kho A, Tantisira K, Li J Cell Commun Signal. 2024; 22(1):347.

PMID: 38943141 PMC: 11214247. DOI: 10.1186/s12964-024-01724-5.


References
1.
Rozhkov N, Hammell M, Hannon G . Multiple roles for Piwi in silencing Drosophila transposons. Genes Dev. 2013; 27(4):400-12. PMC: 3589557. DOI: 10.1101/gad.209767.112. View

2.
Riddle N, Jung Y, Gu T, Alekseyenko A, Asker D, Gui H . Enrichment of HP1a on Drosophila chromosome 4 genes creates an alternate chromatin structure critical for regulation in this heterochromatic domain. PLoS Genet. 2012; 8(9):e1002954. PMC: 3447959. DOI: 10.1371/journal.pgen.1002954. View

3.
Sienski G, Donertas D, Brennecke J . Transcriptional silencing of transposons by Piwi and maelstrom and its impact on chromatin state and gene expression. Cell. 2012; 151(5):964-80. PMC: 3504300. DOI: 10.1016/j.cell.2012.10.040. View

4.
Le Thomas A, Marinov G, Aravin A . A transgenerational process defines piRNA biogenesis in Drosophila virilis. Cell Rep. 2014; 8(6):1617-1623. PMC: 5054749. DOI: 10.1016/j.celrep.2014.08.013. View

5.
Hari K, Cook K, Karpen G . The Drosophila Su(var)2-10 locus regulates chromosome structure and function and encodes a member of the PIAS protein family. Genes Dev. 2001; 15(11):1334-48. PMC: 312712. DOI: 10.1101/gad.877901. View