» Articles » PMID: 31890868

GBM-Targeted OHSV Armed with Matrix Metalloproteinase 9 Enhances Anti-tumor Activity and Animal Survival

Overview
Publisher Cell Press
Date 2020 Jan 1
PMID 31890868
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

The use of mutant strains of oncolytic herpes simplex virus (oHSV) in early-phase human clinical trials for the treatment of glioblastoma multiforme (GBM) has proven safe, but limited efficacy suggests that more potent vector designs are required for effective GBM therapy. Inadequate vector performance may derive from poor intratumoral vector replication and limited spread to uninfected cells. Vector replication may be impaired by mutagenesis strategies to achieve vector safety, and intratumoral virus spread may be hampered by vector entrapment in the tumor-specific extracellular matrix (ECM) that in GBM is composed primarily of type IV collagen. In this report, we armed our previously described epidermal growth factor receptor (EGFR)vIII-targeted, neuronal microRNA-sensitive oHSV with a matrix metalloproteinase (MMP9) to improve intratumoral vector distribution. We show that vector-expressed MMP9 enhanced therapeutic efficacy and long-term animal survival in a GBM xenograft model.

Citing Articles

Unmasking the potential: mechanisms of neuroinflammatory modulation by oncolytic viruses in glioblastoma.

Beder N, Mirbahari S, Belkhelfa M, Mahdizadeh H, Totonchi M Explor Target Antitumor Ther. 2025; 6:1002294.

PMID: 40061139 PMC: 11886384. DOI: 10.37349/etat.2025.1002294.


Extracellular matrix re-normalization to improve cold tumor penetration by oncolytic viruses.

Soko G, Kosgei B, Meena S, Ng Y, Liang H, Zhang B Front Immunol. 2025; 15():1535647.

PMID: 39845957 PMC: 11751056. DOI: 10.3389/fimmu.2024.1535647.


Overcoming Resistance to Temozolomide in Glioblastoma: A Scoping Review of Preclinical and Clinical Data.

Smerdi D, Moutafi M, Kotsantis I, Stavrinou L, Psyrri A Life (Basel). 2024; 14(6).

PMID: 38929657 PMC: 11204771. DOI: 10.3390/life14060673.


An Update on the Clinical Status, Challenges, and Future Directions of Oncolytic Virotherapy for Malignant Gliomas.

Stergiopoulos G, Concilio S, Galanis E Curr Treat Options Oncol. 2024; 25(7):952-991.

PMID: 38896326 PMC: 11878440. DOI: 10.1007/s11864-024-01211-6.


Tutorial: design, production and testing of oncolytic viruses for cancer immunotherapy.

Gujar S, Pol J, Kumar V, Lizarralde-Guerrero M, Konda P, Kroemer G Nat Protoc. 2024; 19(9):2540-2570.

PMID: 38769145 DOI: 10.1038/s41596-024-00985-1.


References
1.
Musah-Eroje A, Watson S . A novel 3D in vitro model of glioblastoma reveals resistance to temozolomide which was potentiated by hypoxia. J Neurooncol. 2019; 142(2):231-240. PMC: 6449313. DOI: 10.1007/s11060-019-03107-0. View

2.
Yoo J, Haseley A, Bratasz A, Chiocca E, Zhang J, Powell K . Antitumor efficacy of 34.5ENVE: a transcriptionally retargeted and "Vstat120"-expressing oncolytic virus. Mol Ther. 2011; 20(2):287-97. PMC: 3277242. DOI: 10.1038/mt.2011.208. View

3.
Reinhart B, Goins W, Harel A, Chaudhry S, Goss J, Yoshimura N . An HSV-based library screen identifies PP1α as a negative TRPV1 regulator with analgesic activity in models of pain. Mol Ther Methods Clin Dev. 2016; 3:16040. PMC: 4916946. DOI: 10.1038/mtm.2016.40. View

4.
Gierasch W, Zimmerman D, Ward S, Vanheyningen T, Romine J, Leib D . Construction and characterization of bacterial artificial chromosomes containing HSV-1 strains 17 and KOS. J Virol Methods. 2006; 135(2):197-206. DOI: 10.1016/j.jviromet.2006.03.014. View

5.
Friedman G, Bernstock J, Chen D, Nan L, Moore B, Kelly V . Enhanced Sensitivity of Patient-Derived Pediatric High-Grade Brain Tumor Xenografts to Oncolytic HSV-1 Virotherapy Correlates with Nectin-1 Expression. Sci Rep. 2018; 8(1):13930. PMC: 6141470. DOI: 10.1038/s41598-018-32353-x. View