» Articles » PMID: 31862476

A New Zinc Chelator, IPZ-010 Ameliorates Postoperative Ileus

Overview
Date 2019 Dec 22
PMID 31862476
Citations 1
Authors
Affiliations
Soon will be listed here.
Abstract

Zinc was discovered to be a novel second messenger in immunoreactive cells. We synthesized a novel free zinc chelator, IPZ-010. Here, we investigated the effects of IPZ-010 in a mouse postoperative ileus model and determined the effects of zinc signal inhibition as a new therapeutic strategy against postoperative ileus. Zinc waves were measured in bone marrow-derived mast cells (BMMCs) loaded with a zinc indicator, Newport green. Degranulation and cytokine expression were measured in BMMCs and bone marrow-derived macrophages (BMDMs). Postoperative ileus model mice were established with intestinal manipulation. Mice were treated with IPZ-010 (30 mg/kg, s.c. or p.o.) 1 h before and 2 h and 4 h after intestinal manipulation. Gastrointestinal transit, inflammatory cell infiltration, and expression of inflammatory mediators were measured. Free zinc waves occurred following antigen stimulation in BMMCs and were blocked by IPZ-010. IPZ-010 inhibited interleukin-6 secretion and degranulation in BMMCs. IPZ-010 inhibited tumor necrosis factor-α mRNA expression in BMMCs stimulated with lipopolysaccharide or adenosine triphosphate, whereas IPZ-010 had no effects on tumor necrosis factor-α mRNA expression in BMDMs stimulated with lipopolysaccharide or adenosine triphosphate. In postoperative ileus model mice, IPZ-010 inhibited leukocyte infiltration and cytokine expression, which ameliorated gastrointestinal transit. Furthermore, ketotifen (1 mg/kg) induced similar effects as IPZ-010. These effects were not amplified by co-administration of IPZ-010 and ketotifen. IPZ-010 inhibited zinc waves, resulting in inhibition of inflammatory responses in activated BMMCs in vitro. Targeting zinc waves in inflammatory cells may be a novel therapeutic strategy for treating postoperative ileus.

Citing Articles

Molecular and cellular mechanisms underlying postoperative paralytic ileus by various immune cell types.

Sui C, Tao L, Bai C, Shao L, Miao J, Chen K Front Pharmacol. 2022; 13:929901.

PMID: 35991871 PMC: 9385171. DOI: 10.3389/fphar.2022.929901.