» Articles » PMID: 31815192

Machine Learning Can Accurately Predict Pre-admission Baseline Hemoglobin and Creatinine in Intensive Care Patients

Overview
Journal NPJ Digit Med
Date 2019 Dec 10
PMID 31815192
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Patients admitted to the intensive care unit frequently have anemia and impaired renal function, but often lack historical blood results to contextualize the acuteness of these findings. Using data available within two hours of ICU admission, we developed machine learning models that accurately (AUC 0.86-0.89) classify an individual patient's baseline hemoglobin and creatinine levels. Compared to assuming the baseline to be the same as the admission lab value, machine learning performed significantly better at classifying acute kidney injury regardless of initial creatinine value, and significantly better at predicting baseline hemoglobin value in patients with admission hemoglobin of <10 g/dl.

Citing Articles

Entering the new digital era of intensive care medicine: an overview of interdisciplinary approaches to use artificial intelligence for patients' benefit.

Old O, Friedrichson B, Zacharowski K, Kloka J Eur J Anaesthesiol Intensive Care. 2025; 2(1):e0014.

PMID: 39916758 PMC: 11783618. DOI: 10.1097/EA9.0000000000000014.


Interpretable machine learning models for predicting in-hospital and 30 days adverse events in acute coronary syndrome patients in Kuwait.

Alkhamis M, Al Jarallah M, Attur S, Zubaid M Sci Rep. 2024; 14(1):1243.

PMID: 38216605 PMC: 10786865. DOI: 10.1038/s41598-024-51604-8.


SpeCamX: mobile app that turns unmodified smartphones into multispectral imagers.

He Q, Li W, Shi Y, Yu Y, Geng W, Sun Z Biomed Opt Express. 2023; 14(9):4929-4946.

PMID: 37791269 PMC: 10545193. DOI: 10.1364/BOE.497602.


Machine learning-based risk factor analysis and prevalence prediction of intestinal parasitic infections using epidemiological survey data.

Zafar A, Attia Z, Tesfaye M, Walelign S, Wordofa M, Abera D PLoS Negl Trop Dis. 2022; 16(6):e0010517.

PMID: 35700192 PMC: 9236253. DOI: 10.1371/journal.pntd.0010517.


Use of Artificial Intelligence in Non-Oncologic Interventional Radiology: Current State and Future Directions.

Malpani R, Petty C, Bhatt N, Staib L, Chapiro J Dig Dis Interv. 2022; 5(4):331-337.

PMID: 35005333 PMC: 8740955. DOI: 10.1055/s-0041-1726300.


References
1.
Carson J, Grossman B, Kleinman S, Tinmouth A, Marques M, Fung M . Red blood cell transfusion: a clinical practice guideline from the AABB*. Ann Intern Med. 2012; 157(1):49-58. DOI: 10.7326/0003-4819-157-1-201206190-00429. View

2.
Gulshan V, Peng L, Coram M, Stumpe M, Wu D, Narayanaswamy A . Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA. 2016; 316(22):2402-2410. DOI: 10.1001/jama.2016.17216. View

3.
Levey A, Eckardt K, Tsukamoto Y, Levin A, Coresh J, Rossert J . Definition and classification of chronic kidney disease: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2005; 67(6):2089-100. DOI: 10.1111/j.1523-1755.2005.00365.x. View

4.
Moreno R, Metnitz B, Adler L, Hoechtl A, Bauer P, Metnitz P . Sepsis mortality prediction based on predisposition, infection and response. Intensive Care Med. 2007; 34(3):496-504. DOI: 10.1007/s00134-007-0943-1. View

5.
Hannun A, Rajpurkar P, Haghpanahi M, Tison G, Bourn C, Turakhia M . Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat Med. 2019; 25(1):65-69. PMC: 6784839. DOI: 10.1038/s41591-018-0268-3. View