» Articles » PMID: 31801093

Quantitative In Vivo Proteomics of Metformin Response in Liver Reveals AMPK-Dependent and -Independent Signaling Networks

Overview
Journal Cell Rep
Publisher Cell Press
Date 2019 Dec 5
PMID 31801093
Citations 20
Authors
Affiliations
Soon will be listed here.
Abstract

Metformin is the front-line treatment for type 2 diabetes worldwide. It acts via effects on glucose and lipid metabolism in metabolic tissues, leading to enhanced insulin sensitivity. Despite significant effort, the molecular basis for metformin response remains poorly understood, with a limited number of specific biochemical pathways studied to date. To broaden our understanding of hepatic metformin response, we combine phospho-protein enrichment in tissue from genetically engineered mice with a quantitative proteomics platform to enable the discovery and quantification of basophilic kinase substrates in vivo. We define proteins whose binding to 14-3-3 are acutely regulated by metformin treatment and/or loss of the serine/threonine kinase, LKB1. Inducible binding of 250 proteins following metformin treatment is observed, 44% of which proteins bind in a manner requiring LKB1. Beyond AMPK, metformin activates protein kinase D and MAPKAPK2 in an LKB1-independent manner, revealing additional kinases that may mediate aspects of metformin response. Deeper analysis uncovered substrates of AMPK in endocytosis and calcium homeostasis.

Citing Articles

AMPK Activation Downregulates TXNIP, Rab5, and Rab7 Within Minutes, Thereby Inhibiting the Endocytosis-Mediated Entry of Human Pathogenic Viruses.

Diesendorf V, La Rocca V, Teutsch M, Alattar H, Obernolte H, Kenst K Cells. 2025; 14(5).

PMID: 40072063 PMC: 11899703. DOI: 10.3390/cells14050334.


The Research Progress of Metformin Regulation of Metabolic Reprogramming in Malignant Tumors.

Sui Q, Yang H, Hu Z, Jin X, Chen Z, Jiang W Pharm Res. 2024; 41(11):2143-2159.

PMID: 39455505 DOI: 10.1007/s11095-024-03783-2.


Research progress on the role of mitochondria in the process of hepatic ischemia-reperfusion injury.

Zhou Y, Qiu T, Wang T, Yu B, Xia K, Guo J Gastroenterol Rep (Oxf). 2024; 12:goae066.

PMID: 38912038 PMC: 11193119. DOI: 10.1093/gastro/goae066.


Systematic Investigation of Dose-Dependent Protein Thermal Stability Changes to Uncover the Mechanisms of the Pleiotropic Effects of Metformin.

Yin K, Wu R ACS Pharmacol Transl Sci. 2024; 7(2):467-477.

PMID: 38357277 PMC: 10863438. DOI: 10.1021/acsptsci.3c00298.


Role of STIM1 in the Regulation of Cardiac Energy Substrate Preference.

Liu P, Yang Z, Wang Y, Sun A Int J Mol Sci. 2023; 24(17).

PMID: 37685995 PMC: 10487555. DOI: 10.3390/ijms241713188.


References
1.
Cobbaut M, Van Lint J . Function and Regulation of Protein Kinase D in Oxidative Stress: A Tale of Isoforms. Oxid Med Cell Longev. 2018; 2018:2138502. PMC: 5944262. DOI: 10.1155/2018/2138502. View

2.
Chauhan A, Liu X, Jing J, Lee H, Yadav R, Liu J . STIM2 interacts with AMPK and regulates calcium-induced AMPK activation. FASEB J. 2018; 33(2):2957-2970. PMC: 6338636. DOI: 10.1096/fj.201801225R. View

3.
Kobayashi T, Hino S, Oue N, Asahara T, Zollo M, Yasui W . Glycogen synthase kinase 3 and h-prune regulate cell migration by modulating focal adhesions. Mol Cell Biol. 2006; 26(3):898-911. PMC: 1347031. DOI: 10.1128/MCB.26.3.898-911.2006. View

4.
Chen S, Synowsky S, Tinti M, Mackintosh C . The capture of phosphoproteins by 14-3-3 proteins mediates actions of insulin. Trends Endocrinol Metab. 2011; 22(11):429-36. DOI: 10.1016/j.tem.2011.07.005. View

5.
Reinhardt H, Yaffe M . Kinases that control the cell cycle in response to DNA damage: Chk1, Chk2, and MK2. Curr Opin Cell Biol. 2009; 21(2):245-55. PMC: 2699687. DOI: 10.1016/j.ceb.2009.01.018. View