» Articles » PMID: 31799045

Signal Averaging Improves Signal-to-noise in OCT Images: But Which Approach Works Best, and When?

Overview
Specialty Radiology
Date 2019 Dec 5
PMID 31799045
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

The high acquisition speed of state-of-the-art optical coherence tomography (OCT) enables massive signal-to-noise ratio (SNR) improvements by signal averaging. Here, we investigate the performance of two commonly used approaches for OCT signal averaging. We present the theoretical SNR performance of (a) computing the average of OCT magnitude data and (b) averaging the complex phasors, and substantiate our findings with simulations and experimentally acquired OCT data. We show that the achieved SNR performance strongly depends on both the SNR of the input signals and the number of averaged signals when the signal bias caused by the noise floor is not accounted for. Therefore we also explore the SNR for the two averaging approaches after correcting for the noise bias and, provided that the phases of the phasors are accurately aligned prior to averaging, then find that complex phasor averaging always leads to higher SNR than magnitude averaging.

Citing Articles

volumetric analysis of retinal vascular hemodynamics in mice with spatio-temporal optical coherence tomography.

Wegrzyn P, Kulesza W, Wielgo M, Tomczewski S, Galinska A, Balamut B Neurophotonics. 2024; 11(4):0450031-4500322.

PMID: 39380716 PMC: 11460669. DOI: 10.1117/1.NPh.11.4.045003.


Quantitative Optimization of Handheld Probe External Pressure on Dermatological Microvasculature Using Optical Coherence Tomography-Based Angiography.

Gu J, Liao J, Zhang T, Zhang Y, Huang Z, Li C Micromachines (Basel). 2024; 15(9).

PMID: 39337788 PMC: 11433813. DOI: 10.3390/mi15091128.


OCTA: Essential or Gimmick?.

Gandhi S, Pattathil N, Choudhry N Ophthalmol Ther. 2024; 13(9):2293-2302.

PMID: 38970762 PMC: 11341508. DOI: 10.1007/s40123-024-00985-0.


Optical-coherence-tomography-based deep-learning scatterer-density estimator using physically accurate noise model.

Seesan T, Mukherjee P, El-Sadek I, Lim Y, Zhu L, Makita S Biomed Opt Express. 2024; 15(5):2832-2848.

PMID: 38855681 PMC: 11161371. DOI: 10.1364/BOE.519743.


Acetazolamide Challenge Changes Outer Retina Bioenergy-Linked and Anatomical OCT Biomarkers Depending on Mouse Strain.

Berkowitz B, Paruchuri A, Stanek J, Podolsky R, Childers K, Roberts R Invest Ophthalmol Vis Sci. 2024; 65(3):21.

PMID: 38488413 PMC: 10946704. DOI: 10.1167/iovs.65.3.21.


References
1.
Drexler W, Liu M, Kumar A, Kamali T, Unterhuber A, Leitgeb R . Optical coherence tomography today: speed, contrast, and multimodality. J Biomed Opt. 2014; 19(7):071412. DOI: 10.1117/1.JBO.19.7.071412. View

2.
Sugita M, Brown R, Popov I, Vitkin A . K-distribution three-dimensional mapping of biological tissues in optical coherence tomography. J Biophotonics. 2017; 11(3). DOI: 10.1002/jbio.201700055. View

3.
Sakamoto A, Hangai M, Yoshimura N . Spectral-domain optical coherence tomography with multiple B-scan averaging for enhanced imaging of retinal diseases. Ophthalmology. 2007; 115(6):1071-1078.e7. DOI: 10.1016/j.ophtha.2007.09.001. View

4.
Lozzi A, Agrawal A, Boretsky A, Welle C, Hammer D . Image quality metrics for optical coherence angiography. Biomed Opt Express. 2015; 6(7):2435-47. PMC: 4505700. DOI: 10.1364/BOE.6.002435. View

5.
Xu D, Vaswani N, Huang Y, Kang J . Modified compressive sensing optical coherence tomography with noise reduction. Opt Lett. 2012; 37(20):4209-11. PMC: 4102613. DOI: 10.1364/OL.37.004209. View