» Articles » PMID: 31782728

Endothelial EphB4 Maintains Vascular Integrity and Transport Function in Adult Heart

Abstract

The homeostasis of heart and other organs relies on the appropriate provision of nutrients and functional specialization of the local vasculature. Here, we have used mouse genetics, imaging and cell biology approaches to investigate how homeostasis in the adult heart is controlled by endothelial EphB4 and its ligand ephrin-B2, which are known regulators of vascular morphogenesis and arteriovenous differentiation during development. We show that inducible and endothelial cell-specific inactivation of in adult mice is compatible with survival, but leads to rupturing of cardiac capillaries, cardiomyocyte hypertrophy, and pathological cardiac remodeling. In contrast, EphB4 is not required for integrity and homeostasis of capillaries in skeletal muscle. Our analysis of mutant mice and cultured endothelial cells shows that EphB4 controls the function of caveolae, cell-cell adhesion under mechanical stress and lipid transport. We propose that EphB4 maintains critical functional properties of the adult cardiac vasculature and thereby prevents dilated cardiomyopathy-like defects.

Citing Articles

Proteomic signature of HIV-associated subclinical left atrial remodeling and incident heart failure.

Peterson T, Hahn V, Moaddel R, Zhu M, Haberlen S, Palella F Nat Commun. 2025; 16(1):610.

PMID: 39800750 PMC: 11725572. DOI: 10.1038/s41467-025-55911-0.


EPHB4-RASA1 Inhibition of PIEZO1 Ras Activation Drives Lymphatic Valvulogenesis.

Chen D, Tang Y, Lapinski P, Wiggins D, Sevick E, Davis M Circ Res. 2024; 135(11):1048-1066.

PMID: 39421925 PMC: 11560524. DOI: 10.1161/CIRCRESAHA.124.325383.


Inducible deletion of endothelial cell Efnb2 delays capillary regeneration and attenuates myofibre reinnervation following myotoxin injury in mice.

Morton A, Jacobsen N, Diller A, Kendra J, Golpasandi S, Cornelison D J Physiol. 2024; 602(19):4907-4927.

PMID: 39196901 PMC: 11466691. DOI: 10.1113/JP285402.


Recent advances of the Ephrin and Eph family in cardiovascular development and pathologies.

Zhu Y, Su S, Shen J, Ma H, Le J, Xie Y iScience. 2024; 27(8):110556.

PMID: 39188984 PMC: 11345580. DOI: 10.1016/j.isci.2024.110556.


Multiomic profiling of new-onset kidney function decline: insights from the STANISLAS study cohort with a 20-year follow-up.

Dupont V, Xhaard C, Behm-Ansmant I, Bresso E, Thuillier Q, Branlant C Clin Kidney J. 2024; 17(8):sfae224.

PMID: 39135941 PMC: 11317839. DOI: 10.1093/ckj/sfae224.


References
1.
Palmer A, Zimmer M, Erdmann K, Eulenburg V, Porthin A, Heumann R . EphrinB phosphorylation and reverse signaling: regulation by Src kinases and PTP-BL phosphatase. Mol Cell. 2002; 9(4):725-37. DOI: 10.1016/s1097-2765(02)00488-4. View

2.
Towbin J, Lowe A, Colan S, Sleeper L, Orav E, Clunie S . Incidence, causes, and outcomes of dilated cardiomyopathy in children. JAMA. 2006; 296(15):1867-76. DOI: 10.1001/jama.296.15.1867. View

3.
Das M, Das S, Lekli I, Das D . Caveolin induces cardioprotection through epigenetic regulation. J Cell Mol Med. 2011; 16(4):888-95. PMC: 3822857. DOI: 10.1111/j.1582-4934.2011.01372.x. View

4.
Van der Vusse G, van Bilsen M, Glatz J . Cardiac fatty acid uptake and transport in health and disease. Cardiovasc Res. 2000; 45(2):279-93. DOI: 10.1016/s0008-6363(99)00263-1. View

5.
Liang L, Patel O, Janes P, Murphy J, Lucet I . Eph receptor signalling: from catalytic to non-catalytic functions. Oncogene. 2019; 38(39):6567-6584. DOI: 10.1038/s41388-019-0931-2. View