» Articles » PMID: 31747099

Theranostic Layer-by-Layer Nanoparticles for Simultaneous Tumor Detection and Gene Silencing

Overview
Specialty Chemistry
Date 2019 Nov 21
PMID 31747099
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

Layer-by-layer nanoparticles (NPs) are modular drug delivery vehicles that incorporate multiple functional materials through sequential deposition of polyelectrolytes onto charged nanoparticle cores. Herein, we combined the multicomponent features and tumor targeting capabilities of layer-by-layer assembly with functional biosensing peptides to create a new class of nanotheranostics. These NPs encapsulate a high weight percentage of siRNA while also carrying a synthetic biosensing peptide on the surface that is cleaved into a urinary reporter upon exposure to specific proteases overexpressed in the tumor microenvironment. Importantly, this biosensor reports back on a molecular signature characteristic to metastatic tumors and associated with poor prognosis, MMP9 protease overexpression. This nanotheranostic mediates noninvasive urinary-based diagnostics in mouse models of three different cancers with simultaneous gene silencing in flank and metastatic mouse models of ovarian cancer.

Citing Articles

Pooled Nanoparticle Screening Using a Chemical Barcoding Approach.

Vaidya K, Regan M, Lin J, Houle J, Gupta A, Stopka S Angew Chem Int Ed Engl. 2024; 64(5):e202420052.

PMID: 39714325 PMC: 11773315. DOI: 10.1002/anie.202420052.


Microfluidic biosensors for biomarker detection in body fluids: a key approach for early cancer diagnosis.

Liu Z, Zhou Y, Lu J, Gong T, Ibanez E, Cifuentes A Biomark Res. 2024; 12(1):153.

PMID: 39639411 PMC: 11622463. DOI: 10.1186/s40364-024-00697-4.


Progress and application of intelligent nanomedicine in urinary system tumors.

Xiao Y, Zhong L, Liu J, Chen L, Wu Y, Li G J Pharm Anal. 2024; 14(12):100964.

PMID: 39582528 PMC: 11582553. DOI: 10.1016/j.jpha.2024.100964.


Layer-by-Layer Nanoparticle Assembly for Biomedicine: Mechanisms, Technologies, and Advancement via Acoustofluidics.

Rowland S, Aghakhani A, Whalley R, Marina Ferreira A, Kotov N, Gentile P ACS Appl Nano Mater. 2024; 7(14):15874-15902.

PMID: 39086513 PMC: 11287493. DOI: 10.1021/acsanm.4c02463.


Poly(l-glutamic acid) augments the transfection performance of lipophilic polycations by overcoming tradeoffs among cytotoxicity, pDNA delivery efficiency, and serum stability.

Sekar R, Lawson J, Wright A, McGrath C, Schadeck C, Kumar P RSC Appl Polym. 2024; 2(4):701-718.

PMID: 39035825 PMC: 11255917. DOI: 10.1039/d4lp00085d.


References
1.
Wright A, Cronin A, Milne D, Bookman M, Burger R, Cohn D . Use and Effectiveness of Intraperitoneal Chemotherapy for Treatment of Ovarian Cancer. J Clin Oncol. 2015; 33(26):2841-7. PMC: 4554746. DOI: 10.1200/JCO.2015.61.4776. View

2.
Sier C, Kubben F, Ganesh S, Heerding M, Griffioen G, Hanemaaijer R . Tissue levels of matrix metalloproteinases MMP-2 and MMP-9 are related to the overall survival of patients with gastric carcinoma. Br J Cancer. 1996; 74(3):413-7. PMC: 2074643. DOI: 10.1038/bjc.1996.374. View

3.
van Driel W, Koole S, Sikorska K, Schagen van Leeuwen J, Schreuder H, Hermans R . Hyperthermic Intraperitoneal Chemotherapy in Ovarian Cancer. N Engl J Med. 2018; 378(3):230-240. DOI: 10.1056/NEJMoa1708618. View

4.
Bowtell D, Bohm S, Ahmed A, Aspuria P, Bast Jr R, Beral V . Rethinking ovarian cancer II: reducing mortality from high-grade serous ovarian cancer. Nat Rev Cancer. 2015; 15(11):668-79. PMC: 4892184. DOI: 10.1038/nrc4019. View

5.
Chen H, Zhang W, Zhu G, Xie J, Chen X . Rethinking cancer nanotheranostics. Nat Rev Mater. 2017; 2. PMC: 5654564. DOI: 10.1038/natrevmats.2017.24. View