» Articles » PMID: 31730853

Genome-Scale Identification of Essential Metabolic Processes for Targeting the Plasmodium Liver Stage

Abstract

Plasmodium gene functions in mosquito and liver stages remain poorly characterized due to limitations in the throughput of phenotyping at these stages. To fill this gap, we followed more than 1,300 barcoded P. berghei mutants through the life cycle. We discover 461 genes required for efficient parasite transmission to mosquitoes through the liver stage and back into the bloodstream of mice. We analyze the screen in the context of genomic, transcriptomic, and metabolomic data by building a thermodynamic model of P. berghei liver-stage metabolism, which shows a major reprogramming of parasite metabolism to achieve rapid growth in the liver. We identify seven metabolic subsystems that become essential at the liver stages compared with asexual blood stages: type II fatty acid synthesis and elongation (FAE), tricarboxylic acid, amino sugar, heme, lipoate, and shikimate metabolism. Selected predictions from the model are individually validated in single mutants to provide future targets for drug development.

Citing Articles

Revisiting the druggable genome using predicted structures and data mining.

Godinez-Macias K, Chen D, Wallis J, Siegel M, Adam A, Bopp S NPJ Drug Discov. 2025; 2(1):3.

PMID: 40066064 PMC: 11892419. DOI: 10.1038/s44386-025-00006-5.


MiNEApy: enhancing enrichment network analysis in metabolic networks.

Pandey V Bioinformatics. 2025; 41(3).

PMID: 39985451 PMC: 11889450. DOI: 10.1093/bioinformatics/btaf077.


Quinoxaline-based anti-schistosomal compounds have potent anti-plasmodial activity.

Rawat M, Padalino G, Adika E, Okombo J, Yeo T, Brancale A PLoS Pathog. 2025; 21(2):e1012216.

PMID: 39899599 PMC: 11809919. DOI: 10.1371/journal.ppat.1012216.


A scalable CRISPR-Cas9 gene editing system facilitates CRISPR screens in the malaria parasite Plasmodium berghei.

Jonsdottir T, Paoletta M, Ishizaki T, Hernandez S, Ivanova M, Herrera Curbelo A Nucleic Acids Res. 2025; 53(2.

PMID: 39844455 PMC: 11754126. DOI: 10.1093/nar/gkaf005.


Generation of a genetically double-attenuated Plasmodium berghei parasite that fully arrests growth during late liver stage development.

Schmid M, Beyeler R, Caldelari R, Rehmann R, Heussler V, Roques M PLoS One. 2024; 19(12):e0316164.

PMID: 39739824 PMC: 11687666. DOI: 10.1371/journal.pone.0316164.


References
1.
Claros M . MitoProt, a Macintosh application for studying mitochondrial proteins. Comput Appl Biosci. 1995; 11(4):441-7. DOI: 10.1093/bioinformatics/11.4.441. View

2.
Gomes A, Bushell E, Schwach F, Girling G, Anar B, Quail M . A genome-scale vector resource enables high-throughput reverse genetic screening in a malaria parasite. Cell Host Microbe. 2015; 17(3):404-413. PMC: 4362957. DOI: 10.1016/j.chom.2015.01.014. View

3.
Mikolajczak S, Silva-Rivera H, Peng X, Tarun A, Camargo N, Jacobs-Lorena V . Distinct malaria parasite sporozoites reveal transcriptional changes that cause differential tissue infection competence in the mosquito vector and mammalian host. Mol Cell Biol. 2008; 28(20):6196-207. PMC: 2577418. DOI: 10.1128/MCB.00553-08. View

4.
Beetsma A, van de Wiel T, Sauerwein R, Eling W . Plasmodium berghei ANKA: purification of large numbers of infectious gametocytes. Exp Parasitol. 1998; 88(1):69-72. DOI: 10.1006/expr.1998.4203. View

5.
Pfander C, Anar B, Schwach F, Otto T, Brochet M, Volkmann K . A scalable pipeline for highly effective genetic modification of a malaria parasite. Nat Methods. 2011; 8(12):1078-82. PMC: 3431185. DOI: 10.1038/nmeth.1742. View