» Articles » PMID: 31709724

Therapeutic Targeting of Circ-CUX1/EWSR1/MAZ Axis Inhibits Glycolysis and Neuroblastoma Progression

Overview
Journal EMBO Mol Med
Specialty Molecular Biology
Date 2019 Nov 12
PMID 31709724
Citations 87
Authors
Affiliations
Soon will be listed here.
Abstract

Aerobic glycolysis is a hallmark of metabolic reprogramming in tumor progression. However, the mechanisms regulating glycolytic gene expression remain elusive in neuroblastoma (NB), the most common extracranial malignancy in childhood. Herein, we identify that CUT-like homeobox 1 (CUX1) and CUX1-generated circular RNA (circ-CUX1) contribute to aerobic glycolysis and NB progression. Mechanistically, p110 CUX1, a transcription factor generated by proteolytic processing of p200 CUX1, promotes the expression of enolase 1, glucose-6-phosphate isomerase, and phosphoglycerate kinase 1, while circ-CUX1 binds to EWS RNA-binding protein 1 (EWSR1) to facilitate its interaction with MYC-associated zinc finger protein (MAZ), resulting in transactivation of MAZ and transcriptional alteration of CUX1 and other genes associated with tumor progression. Administration of an inhibitory peptide blocking circ-CUX1-EWSR1 interaction or lentivirus mediating circ-CUX1 knockdown suppresses aerobic glycolysis, growth, and aggressiveness of NB cells. In clinical NB cases, CUX1 is an independent prognostic factor for unfavorable outcome, and patients with high circ-CUX1 expression have lower survival probability. These results indicate circ-CUX1/EWSR1/MAZ axis as a therapeutic target for aerobic glycolysis and NB progression.

Citing Articles

Role of epigenetics in paediatric cancer pathogenesis & drug resistance.

Leung J, Chiu H, Taneja R Br J Cancer. 2025; .

PMID: 40055485 DOI: 10.1038/s41416-025-02961-2.


Circular RNA pappalysin-1 enhances glycolysis via microRNA-656-3p targeting G-protein subunit gamma-5 to promote colon cancer progression.

Cai A, Ye H, Lin Y, Li J, Fang D, Pan Z Clinics (Sao Paulo). 2025; 80:100594.

PMID: 39951875 PMC: 11874721. DOI: 10.1016/j.clinsp.2025.100594.


Mechanisms and therapeutic implications of gene expression regulation by circRNA-protein interactions in cancer.

Zhang N, Wang X, Li Y, Lu Y, Sheng C, Sun Y Commun Biol. 2025; 8(1):77.

PMID: 39825074 PMC: 11748638. DOI: 10.1038/s42003-024-07383-z.


SNORA37/CMTR1/ELAVL1 feedback loop drives gastric cancer progression via facilitating CD44 alternative splicing.

Bao B, Tian M, Wang X, Yang C, Qu J, Zhou S J Exp Clin Cancer Res. 2025; 44(1):15.

PMID: 39815331 PMC: 11737211. DOI: 10.1186/s13046-025-03278-x.


Back to the Origin: Mechanisms of circRNA-Directed Regulation of Host Genes in Human Disease.

Yuan H, Liao X, Hu D, Guan D, Tian M Noncoding RNA. 2024; 10(5).

PMID: 39452835 PMC: 11510700. DOI: 10.3390/ncrna10050049.


References
1.
Sohn E, Li H, Reidy K, Beers L, Christensen B, Lee S . EWS/FLI1 oncogene activates caspase 3 transcription and triggers apoptosis in vivo. Cancer Res. 2010; 70(3):1154-63. PMC: 2818579. DOI: 10.1158/0008-5472.CAN-09-1993. View

2.
Kerppola T . Bimolecular fluorescence complementation: visualization of molecular interactions in living cells. Methods Cell Biol. 2007; 85:431-70. PMC: 2829325. DOI: 10.1016/S0091-679X(08)85019-4. View

3.
Li D, Mei H, Pu J, Xiang X, Zhao X, Qu H . Intelectin 1 suppresses the growth, invasion and metastasis of neuroblastoma cells through up-regulation of N-myc downstream regulated gene 2. Mol Cancer. 2015; 14:47. PMC: 4359454. DOI: 10.1186/s12943-015-0320-6. View

4.
Mazzocco K, Defferrari R, Sementa A, Garaventa A, Longo L, De Mariano M . Genetic abnormalities in adolescents and young adults with neuroblastoma: A report from the Italian Neuroblastoma group. Pediatr Blood Cancer. 2015; 62(10):1725-32. DOI: 10.1002/pbc.25552. View

5.
Lasda E, Parker R . Circular RNAs: diversity of form and function. RNA. 2014; 20(12):1829-42. PMC: 4238349. DOI: 10.1261/rna.047126.114. View