» Articles » PMID: 31700535

What Can a Comparative Genomics Approach Tell Us About the Pathogenicity of MtDNA Mutations in Human Populations?

Overview
Journal Evol Appl
Specialty Biology
Date 2019 Nov 9
PMID 31700535
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Mitochondrial disorders are heterogeneous, showing variable presentation and penetrance. Over the last three decades, our ability to recognize mitochondrial patients and diagnose these mutations, linking genotype to phenotype, has greatly improved. However, it has become increasingly clear that these strides in diagnostics have not benefited all population groups. Recent studies have demonstrated that patients from genetically understudied populations, in particular those of black African heritage, are less likely to receive a diagnosis of mtDNA disease. It has been suggested that haplogroup context might influence the presentation and penetrance of mtDNA disease; thus, the spectrum of mutations that are associated with disease in different populations. However, to date there is only one well-established example of such an effect: the increased penetrance of two Leber's hereditary optic neuropathy mutations on a haplogroup J background. This paper conducted the most extensive investigation to date into the importance of haplogroup context on the pathogenicity of mtDNA mutations. We searched for proven human point mutations across 726 multiple sequence alignments derived from 33 non-human species absent of disease. A total of 58 pathogenic point mutations arise in the sequences of these species. We assessed the sequence context and found evidence of population variants that could modulate the phenotypic expression of these point mutations masking the pathogenic effects seen in humans. This supports the theory that sequence context is influential in the presentation of mtDNA disease and has implications for diagnostic practices. We have shown that our current understanding of the pathogenicity of mtDNA point mutations, primarily built on studies of individuals with haplogroups HVUKTJ, will not present a complete picture. This will have the effect of creating a diagnostic inequality, whereby individuals who do not belong to these lineages are less likely to receive a genetic diagnosis.

Citing Articles

The sequence variation of mitochondrial tRNA tyrosine and cysteine among Iranian women with idiopathic recurrent miscarriage: A case-control study.

Mojodi E, Mosadegh Mehrjardi A, Naeimzadeh Y, Ghasemi N, Falahati A, Moshtaghioun S Int J Reprod Biomed. 2023; 21(7):567-576.

PMID: 37727391 PMC: 10505698. DOI: 10.18502/ijrm.v21i7.13894.


Mitochondrial DNA in Human Diversity and Health: From the Golden Age to the Omics Era.

Hernandez C Genes (Basel). 2023; 14(8).

PMID: 37628587 PMC: 10453943. DOI: 10.3390/genes14081534.


Mitochondrial DNA population variation is not associated with Alzheimer's in the Japanese population: A consistent finding across global populations.

Wong J, Steyn J, Pienaar I, Elson J PLoS One. 2022; 17(10):e0276169.

PMID: 36264923 PMC: 9584534. DOI: 10.1371/journal.pone.0276169.


A broad comparative genomics approach to understanding the pathogenicity of Complex I mutations.

Klink G, OKeefe H, Gogna A, Bazykin G, Elson J Sci Rep. 2021; 11(1):19578.

PMID: 34599203 PMC: 8486755. DOI: 10.1038/s41598-021-98360-7.


Heterologous Inferential Analysis (HIA) and Other Emerging Concepts: In Understanding Mitochondrial Variation In Pathogenesis: There is no More Low-Hanging Fruit.

Vila-Sanjurjo A, Smith P, Elson J Methods Mol Biol. 2021; 2277:203-245.

PMID: 34080154 DOI: 10.1007/978-1-0716-1270-5_14.


References
1.
Sonney S, Leipzig J, Lott M, Zhang S, Procaccio V, Wallace D . Predicting the pathogenicity of novel variants in mitochondrial tRNA with MitoTIP. PLoS Comput Biol. 2017; 13(12):e1005867. PMC: 5739504. DOI: 10.1371/journal.pcbi.1005867. View

2.
Torres A, Batlle E, Ribas de Pouplana L . Role of tRNA modifications in human diseases. Trends Mol Med. 2014; 20(6):306-14. DOI: 10.1016/j.molmed.2014.01.008. View

3.
Salas A, Elson J . Raising doubts about the pathogenicity of mitochondrial DNA mutation m.3308T>C in left ventricular hypertraveculation/noncompaction. Cardiology. 2012; 122(2):113-5. DOI: 10.1159/000339348. View

4.
Lake N, Compton A, Rahman S, Thorburn D . Leigh syndrome: One disorder, more than 75 monogenic causes. Ann Neurol. 2015; 79(2):190-203. DOI: 10.1002/ana.24551. View

5.
van der Walt E, Smuts I, Taylor R, Elson J, Turnbull D, Louw R . Characterization of mtDNA variation in a cohort of South African paediatric patients with mitochondrial disease. Eur J Hum Genet. 2012; 20(6):650-6. PMC: 3355259. DOI: 10.1038/ejhg.2011.262. View