» Articles » PMID: 31697017

Self-Assembling Supramolecular Hybrid Hydrogel Beads

Overview
Specialty Chemistry
Date 2019 Nov 8
PMID 31697017
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

With the goal of imposing shape and structure on supramolecular gels, we combine a low-molecular-weight gelator (LMWG) with the polymer gelator (PG) calcium alginate in a hybrid hydrogel. By imposing thermal and temporal control of the orthogonal gelation methods, the system either forms an extended interpenetrating network or core-shell-structured gel beads-a rare example of a supramolecular gel formulated inside discrete gel spheres. The self-assembled LMWG retains its unique properties within the beads, such as remediating Pd and reducing it in situ to yield catalytically active Pd nanoparticles. A single PdNP-loaded gel bead can catalyse the Suzuki-Miyaura reaction, constituting a simple and easy-to-use reaction-dosing form. These uniquely shaped and structured LMWG-filled gel beads are a versatile platform technology with great potential in a range of applications.

Citing Articles

Harnessing Glycolipids for Supramolecular Gelation: A Contemporary Review.

Holey S, Nayak R ACS Omega. 2024; 9(24):25513-25538.

PMID: 38911776 PMC: 11190938. DOI: 10.1021/acsomega.4c00958.


Cell-Like Synthetic Supramolecular Soft Materials Realized in Multicomponent, Non-/Out-of-Equilibrium Dynamic Systems.

Kubota R, Hamachi I Adv Sci (Weinh). 2023; 11(8):e2306830.

PMID: 38018341 PMC: 10885657. DOI: 10.1002/advs.202306830.


Fabricating Shaped and Patterned Supramolecular Multigelator Objects via Diffusion-Adhesion Gel Assembly.

Tangsombun C, Smith D J Am Chem Soc. 2023; 145(44):24061-24070.

PMID: 37885219 PMC: 10636748. DOI: 10.1021/jacs.3c07376.


Supramolecular Ionic Liquid Gels for Enzyme Entrapment.

Imam H, Hill K, Reid A, Mix S, Marr P, Marr A ACS Sustain Chem Eng. 2023; 11(18):6829-6837.

PMID: 37180026 PMC: 10170508. DOI: 10.1021/acssuschemeng.3c00517.


Four distinct network patterns of supramolecular/polymer composite hydrogels controlled by formation kinetics and interfiber interactions.

Nakamura K, Kubota R, Aoyama T, Urayama K, Hamachi I Nat Commun. 2023; 14(1):1696.

PMID: 36973291 PMC: 10042874. DOI: 10.1038/s41467-023-37412-0.


References
1.
Weiss R . The past, present, and future of molecular gels. What is the status of the field, and where is it going?. J Am Chem Soc. 2014; 136(21):7519-30. DOI: 10.1021/ja503363v. View

2.
Avino F, Matheson A, Adams D, Clegg P . Stabilizing bubble and droplet interfaces using dipeptide hydrogels. Org Biomol Chem. 2017; 15(30):6342-6348. DOI: 10.1039/c7ob01053b. View

3.
Torres-Martinez A, Angulo-Pachon C, Galindo F, Miravet J . In between molecules and self-assembled fibrillar networks: highly stable nanogel particles from a low molecular weight hydrogelator. Soft Matter. 2019; 15(17):3565-3572. DOI: 10.1039/c9sm00252a. View

4.
Cornwell D, Okesola B, Smith D . Multidomain hybrid hydrogels: spatially resolved photopatterned synthetic nanomaterials combining polymer and low-molecular-weight gelators. Angew Chem Int Ed Engl. 2014; 53(46):12461-5. DOI: 10.1002/anie.201405098. View

5.
Hirst A, Escuder B, Miravet J, Smith D . High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: from regenerative medicine to electronic devices. Angew Chem Int Ed Engl. 2008; 47(42):8002-18. DOI: 10.1002/anie.200800022. View