» Articles » PMID: 31686023

Inception Loops Discover What Excites Neurons Most Using Deep Predictive Models

Overview
Journal Nat Neurosci
Date 2019 Nov 6
PMID 31686023
Citations 69
Authors
Affiliations
Soon will be listed here.
Abstract

Finding sensory stimuli that drive neurons optimally is central to understanding information processing in the brain. However, optimizing sensory input is difficult due to the predominantly nonlinear nature of sensory processing and high dimensionality of the input. We developed 'inception loops', a closed-loop experimental paradigm combining in vivo recordings from thousands of neurons with in silico nonlinear response modeling. Our end-to-end trained, deep-learning-based model predicted thousands of neuronal responses to arbitrary, new natural input with high accuracy and was used to synthesize optimal stimuli-most exciting inputs (MEIs). For mouse primary visual cortex (V1), MEIs exhibited complex spatial features that occurred frequently in natural scenes but deviated strikingly from the common notion that Gabor-like stimuli are optimal for V1. When presented back to the same neurons in vivo, MEIs drove responses significantly better than control stimuli. Inception loops represent a widely applicable technique for dissecting the neural mechanisms of sensation.

Citing Articles

Orientation selectivity properties for the affine Gaussian derivative and the affine Gabor models for visual receptive fields.

Lindeberg T J Comput Neurosci. 2025; 53(1):61-98.

PMID: 39878929 PMC: 11868404. DOI: 10.1007/s10827-024-00888-w.


Poisson Variational Autoencoder.

Vafaii H, Galor D, Yates J ArXiv. 2024; .

PMID: 39713798 PMC: 11661288.


A spatiotemporal style transfer algorithm for dynamic visual stimulus generation.

Greco A, Siegel M Nat Comput Sci. 2024; 5(2):155-169.

PMID: 39706876 PMC: 11860245. DOI: 10.1038/s43588-024-00746-w.


Parallel development of object recognition in newborn chicks and deep neural networks.

Pandey L, Lee D, Wood S, Wood J PLoS Comput Biol. 2024; 20(12):e1012600.

PMID: 39621774 PMC: 11651591. DOI: 10.1371/journal.pcbi.1012600.


Convolutional neural network models describe the encoding subspace of local circuits in auditory cortex.

Wingert J, Parida S, Norman-Haignere S, David S bioRxiv. 2024; .

PMID: 39574636 PMC: 11581007. DOI: 10.1101/2024.11.07.622384.


References
1.
ADRIAN E, BRONK D . The discharge of impulses in motor nerve fibres: Part I. Impulses in single fibres of the phrenic nerve. J Physiol. 1928; 66(1):81-101. PMC: 1402751. DOI: 10.1113/jphysiol.1928.sp002509. View

2.
Chichilnisky E . A simple white noise analysis of neuronal light responses. Network. 2001; 12(2):199-213. View

3.
Antolik J, Hofer S, Bednar J, Mrsic-Flogel T . Model Constrained by Visual Hierarchy Improves Prediction of Neural Responses to Natural Scenes. PLoS Comput Biol. 2016; 12(6):e1004927. PMC: 4922657. DOI: 10.1371/journal.pcbi.1004927. View

4.
Harth E, Tzanakou E . Alopex: a stochastic method for determining visual receptive fields. Vision Res. 1974; 14(12):1475-82. DOI: 10.1016/0042-6989(74)90024-8. View

5.
Benda J, Gollisch T, Machens C, Herz A . From response to stimulus: adaptive sampling in sensory physiology. Curr Opin Neurobiol. 2007; 17(4):430-6. DOI: 10.1016/j.conb.2007.07.009. View