» Articles » PMID: 31672968

Phase Separation of Polo-like Kinase 4 by Autoactivation and Clustering Drives Centriole Biogenesis

Overview
Journal Nat Commun
Specialty Biology
Date 2019 Nov 2
PMID 31672968
Citations 43
Authors
Affiliations
Soon will be listed here.
Abstract

Tight control of centriole duplication is critical for normal chromosome segregation and the maintenance of genomic stability. Polo-like kinase 4 (Plk4) is a key regulator of centriole biogenesis. How Plk4 dynamically promotes its symmetry-breaking relocalization and achieves its procentriole-assembly state remains unknown. Here we show that Plk4 is a unique kinase that utilizes its autophosphorylated noncatalytic cryptic polo-box (CPB) to phase separate and generate a nanoscale spherical condensate. Analyses of the crystal structure of a phospho-mimicking, condensation-proficient CPB mutant reveal that a disordered loop at the CPB PB2-tip region is critically required for Plk4 to generate condensates and induce procentriole assembly. CPB phosphorylation also promotes Plk4's dissociation from the Cep152 tether while binding to downstream STIL, thus allowing Plk4 condensate to serve as an assembling body for centriole biogenesis. This study uncovers the mechanism underlying Plk4 activation and may offer strategies for anti-Plk4 intervention against genomic instability and cancer.

Citing Articles

Drosophila Alms1 proteins regulate centriolar cartwheel assembly by enabling Plk4-Ana2 amplification loop.

Brunet M, Thomas J, Lapart J, Kruttli L, Laporte M, Riparbelli M EMBO J. 2025; .

PMID: 40021845 DOI: 10.1038/s44318-025-00382-8.


Amplified centrosomes-more than just a threat.

Kiermaier E, Stotzel I, Schapfl M, Villunger A EMBO Rep. 2024; 25(10):4153-4167.

PMID: 39285247 PMC: 11467336. DOI: 10.1038/s44319-024-00260-0.


Spermatocytes have the capacity to segregate chromosomes despite centriole duplication failure.

Skinner M, Simington C, Lopez-Jimenez P, Baran K, Xu J, Dayani Y EMBO Rep. 2024; 25(8):3373-3405.

PMID: 38943004 PMC: 11316026. DOI: 10.1038/s44319-024-00187-6.


Aurora-A condensation mediated by BuGZ aids its mitotic centrosome functions.

Zheng H, Zhang Q, Liu X, Shi F, Yang F, Xiang S iScience. 2024; 27(5):109785.

PMID: 38746663 PMC: 11090908. DOI: 10.1016/j.isci.2024.109785.


Centrosome amplification and aneuploidy driven by the HIV-1-induced Vpr•VprBP•Plk4 complex in CD4 T cells.

Park J, Kim T, Zeng Y, Mikolaj M, Il Ahn J, Alam M Nat Commun. 2024; 15(1):2017.

PMID: 38443376 PMC: 10914751. DOI: 10.1038/s41467-024-46306-8.


References
1.
Fu J, Hagan I, Glover D . The centrosome and its duplication cycle. Cold Spring Harb Perspect Biol. 2015; 7(2):a015800. PMC: 4315929. DOI: 10.1101/cshperspect.a015800. View

2.
Klein H, Guichard P, Hamel V, Gonczy P, Schwarz U . Computational support for a scaffolding mechanism of centriole assembly. Sci Rep. 2016; 6:27075. PMC: 4897622. DOI: 10.1038/srep27075. View

3.
Park S, Park J, Kim T, Kim J, Kwak M, Ku B . Molecular basis for unidirectional scaffold switching of human Plk4 in centriole biogenesis. Nat Struct Mol Biol. 2014; 21(8):696-703. PMC: 4125498. DOI: 10.1038/nsmb.2846. View

4.
Arquint C, Sonnen K, Stierhof Y, Nigg E . Cell-cycle-regulated expression of STIL controls centriole number in human cells. J Cell Sci. 2012; 125(Pt 5):1342-52. DOI: 10.1242/jcs.099887. View

5.
Keller D, Orpinell M, Olivier N, Wachsmuth M, Mahen R, Wyss R . Mechanisms of HsSAS-6 assembly promoting centriole formation in human cells. J Cell Biol. 2014; 204(5):697-712. PMC: 3941056. DOI: 10.1083/jcb.201307049. View