» Articles » PMID: 31667348

Observation of a Transition Between Dynamical Phases in a Quantum Degenerate Fermi Gas

Overview
Journal Sci Adv
Specialties Biology
Science
Date 2019 Nov 1
PMID 31667348
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

A proposed paradigm for out-of-equilibrium quantum systems is that an analog of quantum phase transitions exists between parameter regimes of qualitatively distinct time-dependent behavior. Here, we present evidence of such a transition between dynamical phases in a cold-atom quantum simulator of the collective Heisenberg model. Our simulator encodes spin in the hyperfine states of ultracold fermionic potassium. Atoms are pinned in a network of single-particle modes, whose spatial extent emulates the long-range interactions of traditional quantum magnets. We find that below a critical interaction strength, magnetization of an initially polarized fermionic gas decays quickly, while above the transition point, the magnetization becomes long-lived because of an energy gap that protects against dephasing by the inhomogeneous axial field. Our quantum simulation reveals a nonequilibrium transition predicted to exist but not yet directly observed in quenched s-wave superconductors.

Citing Articles

Observing dynamical phases of BCS superconductors in a cavity QED simulator.

Young D, Chu A, Song E, Barberena D, Wellnitz D, Niu Z Nature. 2024; 625(7996):679-684.

PMID: 38267683 DOI: 10.1038/s41586-023-06911-x.


Hamiltonian engineering of spin-orbit-coupled fermions in a Wannier-Stark optical lattice clock.

Aeppli A, Chu A, Bothwell T, Kennedy C, Kedar D, He P Sci Adv. 2022; 8(41):eadc9242.

PMID: 36223457 PMC: 9555777. DOI: 10.1126/sciadv.adc9242.


Far-from-equilibrium universality in the two-dimensional Heisenberg model.

Rodriguez-Nieva J, Pineiro Orioli A, Marino J Proc Natl Acad Sci U S A. 2022; 119(28):e2122599119.

PMID: 35787047 PMC: 9282433. DOI: 10.1073/pnas.2122599119.


Exploring dynamical phase transitions with cold atoms in an optical  cavity.

Muniz J, Barberena D, Lewis-Swan R, Young D, Cline J, Rey A Nature. 2020; 580(7805):602-607.

PMID: 32350478 DOI: 10.1038/s41586-020-2224-x.


Measuring a dynamical topological order parameter in quantum walks.

Xu X, Wang Q, Heyl M, Budich J, Pan W, Chen Z Light Sci Appl. 2020; 9:7.

PMID: 31993125 PMC: 6971032. DOI: 10.1038/s41377-019-0237-8.

References
1.
Deutsch C, Ramirez-Martinez F, Lacroute C, Reinhard F, Schneider T, Fuchs J . Spin self-rephasing and very long coherence times in a trapped atomic ensemble. Phys Rev Lett. 2010; 105(2):020401. DOI: 10.1103/PhysRevLett.105.020401. View

2.
Solaro C, Bonnin A, Combes F, Lopez M, Alauze X, Fuchs J . Competition between Spin Echo and Spin Self-Rephasing in a Trapped Atom Interferometer. Phys Rev Lett. 2016; 117(16):163003. DOI: 10.1103/PhysRevLett.117.163003. View

3.
Baumann K, Guerlin C, Brennecke F, Esslinger T . Dicke quantum phase transition with a superfluid gas in an optical cavity. Nature. 2010; 464(7293):1301-6. DOI: 10.1038/nature09009. View

4.
Eckstein M, Kollar M, Werner P . Thermalization after an interaction quench in the Hubbard model. Phys Rev Lett. 2009; 103(5):056403. DOI: 10.1103/PhysRevLett.103.056403. View

5.
Du X, Zhang Y, Petricka J, Thomas J . Controlling spin current in a trapped Fermi gas. Phys Rev Lett. 2009; 103(1):010401. DOI: 10.1103/PhysRevLett.103.010401. View