» Articles » PMID: 31993125

Measuring a Dynamical Topological Order Parameter in Quantum Walks

Overview
Journal Light Sci Appl
Publisher Springer Nature
Date 2020 Jan 30
PMID 31993125
Citations 3
Authors
Affiliations
Soon will be listed here.
Abstract

Quantum processes of inherent dynamical nature, such as quantum walks, defy a description in terms of an equilibrium statistical physics ensemble. Until now, identifying the general principles behind the underlying unitary quantum dynamics has remained a key challenge. Here, we show and experimentally observe that split-step quantum walks admit a characterization in terms of a dynamical topological order parameter (DTOP). This integer-quantized DTOP measures, at a given time, the winding of the geometric phase accumulated by the wavefunction during a quantum walk. We observe distinct dynamical regimes in our experimentally realized quantum walks, and each regime can be attributed to a qualitatively different temporal behavior of the DTOP. Upon identifying an equivalent many-body problem, we reveal an intriguing connection between the nonanalytic changes of the DTOP in quantum walks and the occurrence of dynamical quantum phase transitions.

Citing Articles

Observing multifarious topological phase transitions with real-space indicator.

Lu Y, Wang Y, Mei F, Chang Y, Zheng H, Jia S Nanophotonics. 2024; 11(1):153-160.

PMID: 39635006 PMC: 11501473. DOI: 10.1515/nanoph-2021-0559.


Microstructure and domain engineering of lithium niobate crystal films for integrated photonic applications.

Sun D, Zhang Y, Wang D, Song W, Liu X, Pang J Light Sci Appl. 2020; 9(1):197.

PMID: 33303741 PMC: 7729400. DOI: 10.1038/s41377-020-00434-0.


Observation of emergent momentum-time skyrmions in parity-time-symmetric non-unitary quench dynamics.

Wang K, Qiu X, Xiao L, Zhan X, Bian Z, Sanders B Nat Commun. 2019; 10(1):2293.

PMID: 31123259 PMC: 6533298. DOI: 10.1038/s41467-019-10252-7.

References
1.
Ramasesh V, Flurin E, Rudner M, Siddiqi I, Yao N . Direct Probe of Topological Invariants Using Bloch Oscillating Quantum Walks. Phys Rev Lett. 2017; 118(13):130501. DOI: 10.1103/PhysRevLett.118.130501. View

2.
Chen Z, Zhou Y, Shen J . Exact dissipation model for arbitrary photonic Fock state transport in waveguide QED systems. Opt Lett. 2017; 42(4):887-890. DOI: 10.1364/OL.42.000887. View

3.
Xu X, Wang Q, Pan W, Sun K, Xu J, Chen G . Measuring the Winding Number in a Large-Scale Chiral Quantum Walk. Phys Rev Lett. 2018; 120(26):260501. DOI: 10.1103/PhysRevLett.120.260501. View

4.
Poulios K, Keil R, Fry D, Meinecke J, Matthews J, Politi A . Quantum walks of correlated photon pairs in two-dimensional waveguide arrays. Phys Rev Lett. 2014; 112(14):143604. DOI: 10.1103/PhysRevLett.112.143604. View

5.
Sansoni L, Sciarrino F, Vallone G, Mataloni P, Crespi A, Ramponi R . Two-particle bosonic-fermionic quantum walk via integrated photonics. Phys Rev Lett. 2012; 108(1):010502. DOI: 10.1103/PhysRevLett.108.010502. View