» Articles » PMID: 31666327

The Dissociation Mechanism of Processive Cellulases

Overview
Specialty Science
Date 2019 Nov 1
PMID 31666327
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

Cellulase enzymes deconstruct recalcitrant cellulose into soluble sugars, making them a biocatalyst of biotechnological interest for use in the nascent lignocellulosic bioeconomy. Cellobiohydrolases (CBHs) are cellulases capable of liberating many sugar molecules in a processive manner without dissociating from the substrate. Within the complete processive cycle of CBHs, dissociation from the cellulose substrate is rate limiting, but the molecular mechanism of this step is unknown. Here, we present a direct comparison of potential molecular mechanisms for dissociation via Hamiltonian replica exchange molecular dynamics of the model fungal CBH, Cel7A. Computational rate estimates indicate that stepwise cellulose dethreading from the binding tunnel is 4 orders of magnitude faster than a clamshell mechanism, in which the substrate-enclosing loops open and release the substrate without reversing. We also present the crystal structure of a disulfide variant that covalently links substrate-enclosing loops on either side of the substrate-binding tunnel, which constitutes a CBH that can only dissociate via stepwise dethreading. Biochemical measurements indicate that this variant has a dissociation rate constant essentially equivalent to the wild type, implying that dethreading is likely the predominant mechanism for dissociation.

Citing Articles

Molecular Details of Polyester Decrystallization via Molecular Simulation.

Lazarenko D, Schmidt G, Crowley M, Beckham G, Knott B Macromolecules. 2025; 58(4):1795-1803.

PMID: 40026450 PMC: 11866931. DOI: 10.1021/acs.macromol.4c02130.


The Effect of Polyethylene Glycol Addition on Improving the Bioconversion of Cellulose.

Szentner K, Waskiewicz A, Imbiorowicz R, Borysiak S Molecules. 2024; 29(23).

PMID: 39683942 PMC: 11643667. DOI: 10.3390/molecules29235785.


Single-molecule tracking reveals dual front door/back door inhibition of Cel7A cellulase by its product cellobiose.

Nong D, Haviland Z, Zexer N, Pfaff S, Cosgrove D, Tien M Proc Natl Acad Sci U S A. 2024; 121(18):e2322567121.

PMID: 38648472 PMC: 11067010. DOI: 10.1073/pnas.2322567121.


Engineering of glycoside hydrolase family 7 cellobiohydrolases directed by natural diversity screening.

Brunecky R, Knott B, Subramanian V, Linger J, Beckham G, Amore A J Biol Chem. 2024; 300(3):105749.

PMID: 38354778 PMC: 10943489. DOI: 10.1016/j.jbc.2024.105749.


Molecular mechanisms of processive glycoside hydrolases underline catalytic pragmatism.

Hrmova M, Schwerdt J Biochem Soc Trans. 2023; 51(3):1387-1403.

PMID: 37265403 PMC: 10317168. DOI: 10.1042/BST20230136.


References
1.
Valdivia M, Galan J, Laffarga J, Ramos J . Biofuels 2020: Biorefineries based on lignocellulosic materials. Microb Biotechnol. 2016; 9(5):585-94. PMC: 4993176. DOI: 10.1111/1751-7915.12387. View

2.
Klemm D, Heublein B, Fink H, Bohn A . Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl. 2005; 44(22):3358-93. DOI: 10.1002/anie.200460587. View

3.
Igarashi K, Koivula A, Wada M, Kimura S, Penttila M, Samejima M . High speed atomic force microscopy visualizes processive movement of Trichoderma reesei cellobiohydrolase I on crystalline cellulose. J Biol Chem. 2009; 284(52):36186-36190. PMC: 2794734. DOI: 10.1074/jbc.M109.034611. View

4.
Bu L, Beckham G, Shirts M, Nimlos M, Adney W, Himmel M . Probing carbohydrate product expulsion from a processive cellulase with multiple absolute binding free energy methods. J Biol Chem. 2011; 286(20):18161-9. PMC: 3093888. DOI: 10.1074/jbc.M110.212076. View

5.
Haddad Momeni M, Ubhayasekera W, Sandgren M, Stahlberg J, Hansson H . Structural insights into the inhibition of cellobiohydrolase Cel7A by xylo-oligosaccharides. FEBS J. 2015; 282(11):2167-77. DOI: 10.1111/febs.13265. View