Upregulation of MiR-129-5p Increases the Sensitivity to Taxol Through Inhibiting HMGB1-mediated Cell Autophagy in Breast Cancer MCF-7 Cells
Overview
General Medicine
Authors
Affiliations
Although Taxol has improved the survival of cancer patients as a first-line chemotherapeutic agent, an increasing number of patients develop resistance to Taxol after prolonged treatment. The potential mechanisms of cancer cell resistance to Taxol are not completely clear. It has been reported that microRNAs (miRNAs) are involved in regulating the sensitivity of cancer cells to various chemotherapeutic agents. In this study, we aimed to explore the role of miR-129-5p in regulating the sensitivity of breast cancer cells to Taxol. Cell apoptosis and autophagy, and the sensitivity of MCF-7 cells to Taxol were assessed with a series of in vitro assays. Our results showed that the inhibition of autophagy increased the Taxol-induced apoptosis and the sensitivity of MCF-7 cells to Taxol. Up-regulation of miR-129-5p also inhibited autophagy and induced apoptosis. Furthermore, miR-129-5p overexpression increased the sensitivity of MCF-7 cells to Taxol. High mobility group box 1 (HMGB1), a target gene of miR-129-5p and a regulator of autophagy, was negatively regulated by miR-129-5p. We found that interference of HMGB1 enhanced the chemosensitivity of Taxol by inhibiting autophagy and inducing apoptosis in MCF-7 cells. Taken together, our findings suggested that miR-129-5p increased the chemosensitivity of MCF-7 cells to Taxol through suppressing autophagy and enhancing apoptosis by inhibiting HMGB1. Using miR-129-5p/HMGB1/autophagy-based therapeutic strategies may be a potential treatment for overcoming Taxol resistance in breast cancer.
MicroRNA-mediated autophagy and drug resistance in cancer: mechanisms and therapeutic strategies.
Wei J, Wang X, Yu D, Tu Y, Yu Y Discov Oncol. 2024; 15(1):662.
PMID: 39549162 PMC: 11569378. DOI: 10.1007/s12672-024-01525-9.
Mechanisms involved in the HMGB1 modulation of tumor multidrug resistance (Review).
Shao L, Zhu L, Wang M, Ning Y, Chen F, Gao X Int J Mol Med. 2023; 52(2).
PMID: 37387415 PMC: 10373125. DOI: 10.3892/ijmm.2023.5272.
The Function of Autophagy in the Initiation, and Development of Breast Cancer.
Beilankouhi E, Valilo M, Dastmalchi N, Teimourian S, Safaralizadeh R Curr Med Chem. 2023; 31(20):2974-2990.
PMID: 37138421 DOI: 10.2174/0929867330666230503145319.
Targeting HMGB1: An available Therapeutic Strategy for Breast Cancer Therapy.
Dong H, Zhang L, Liu S Int J Biol Sci. 2022; 18(8):3421-3434.
PMID: 35637945 PMC: 9134916. DOI: 10.7150/ijbs.73504.
Zhu D, Zhou M, Wang K, Hu X, Gong L, Luo H Ann Transl Med. 2022; 10(6):345.
PMID: 35433953 PMC: 9011209. DOI: 10.21037/atm-22-979.