» Articles » PMID: 31664080

DendPoint: a Web Resource for Dendrimer Pharmacokinetics Investigation and Prediction

Overview
Journal Sci Rep
Specialty Science
Date 2019 Oct 31
PMID 31664080
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

Nanomedicine development currently suffers from a lack of efficient tools to predict pharmacokinetic behavior without relying upon testing in large numbers of animals, impacting success rates and development costs. This work presents dendPoint, the first in silico model to predict the intravenous pharmacokinetics of dendrimers, a commonly explored drug vector, based on physicochemical properties. We have manually curated the largest relational database of dendrimer pharmacokinetic parameters and their structural/physicochemical properties. This was used to develop a machine learning-based model capable of accurately predicting pharmacokinetic parameters, including half-life, clearance, volume of distribution and dose recovered in the liver and urine. dendPoint successfully predicts dendrimer pharmacokinetic properties, achieving correlations of up to r = 0.83 and Q up to 0.68. dendPoint is freely available as a user-friendly web-service and database at http://biosig.unimelb.edu.au/dendpoint . This platform is ultimately expected to be used to guide dendrimer construct design and refinement prior to embarking on more time consuming and expensive in vivo testing.

Citing Articles

Magnetic Nanoparticles and Drug Delivery Systems for Anti-Cancer Applications: A Review.

Graham W, Torbett-Dougherty M, Islam A, Soleimani S, Bruce-Tagoe T, Johnson J Nanomaterials (Basel). 2025; 15(4).

PMID: 39997849 PMC: 11858650. DOI: 10.3390/nano15040285.


piscesCSM: prediction of anticancer synergistic drug combinations.

AlJarf R, Rodrigues C, Myung Y, Pires D, Ascher D J Cheminform. 2024; 16(1):81.

PMID: 39030592 PMC: 11264925. DOI: 10.1186/s13321-024-00859-4.


Data-Driven Approaches to Predict Dendrimer Cytotoxicity.

Maity T, Balachandran A, Krishnamurthy L, Nagar K, Upadhyayula R, Sengupta S ACS Omega. 2024; 9(23):24899-24906.

PMID: 38882163 PMC: 11173563. DOI: 10.1021/acsomega.4c01775.


Peptide Dendrimer-Based Antibacterial Agents: Synthesis and Applications.

Paul S, Verma S, Chen Y ACS Infect Dis. 2024; 10(4):1034-1055.

PMID: 38428037 PMC: 11019562. DOI: 10.1021/acsinfecdis.3c00624.


AI-Driven Enhancements in Drug Screening and Optimization.

Serghini A, Portelli S, Ascher D Methods Mol Biol. 2023; 2714:269-294.

PMID: 37676604 DOI: 10.1007/978-1-0716-3441-7_15.


References
1.
Kaminskas L, Boyd B, Karellas P, Henderson S, Giannis M, Krippner G . Impact of surface derivatization of poly-L-lysine dendrimers with anionic arylsulfonate or succinate groups on intravenous pharmacokinetics and disposition. Mol Pharm. 2007; 4(6):949-61. DOI: 10.1021/mp070047s. View

2.
Gilkey M, Krishnan V, Scheetz L, Jia X, Rajasekaran A, Dhurjati P . Physiologically Based Pharmacokinetic Modeling of Fluorescently Labeled Block Copolymer Nanoparticles for Controlled Drug Delivery in Leukemia Therapy. CPT Pharmacometrics Syst Pharmacol. 2015; 4(3):e00013. PMC: 4394613. DOI: 10.1002/psp4.13. View

3.
Pires D, Ascher D . mCSM-NA: predicting the effects of mutations on protein-nucleic acids interactions. Nucleic Acids Res. 2017; 45(W1):W241-W246. PMC: 5570212. DOI: 10.1093/nar/gkx236. View

4.
Wolfram J, Yang Y, Shen J, Moten A, Chen C, Shen H . The nano-plasma interface: Implications of the protein corona. Colloids Surf B Biointerfaces. 2014; 124:17-24. PMC: 4152388. DOI: 10.1016/j.colsurfb.2014.02.035. View

5.
Lin Z, Monteiro-Riviere N, Riviere J . A physiologically based pharmacokinetic model for polyethylene glycol-coated gold nanoparticles of different sizes in adult mice. Nanotoxicology. 2015; 10(2):162-72. DOI: 10.3109/17435390.2015.1027314. View