» Articles » PMID: 24656615

The Nano-plasma Interface: Implications of the Protein Corona

Overview
Publisher Elsevier
Specialty Chemistry
Date 2014 Mar 25
PMID 24656615
Citations 53
Authors
Affiliations
Soon will be listed here.
Abstract

The interactions between nanoparticles and macromolecules in the blood plasma dictate the biocompatibility and efficacy of nanotherapeutics. Accordingly, the properties of nanoparticles and endogenous biomolecules change at the nano-plasma interface. Here, we review the implications of such changes including toxicity, immunological recognition, molecular targeting, biodistribution, intracellular uptake, and drug release. Although this interface poses several challenges for nanomedicine, it also presents opportunities for exploiting nanoparticle-protein interactions.

Citing Articles

Increasing the biomolecular relevance of cell culture practice.

Ghebosu R, Hui L, Wolfram J J Biomed Sci. 2025; 32(1):3.

PMID: 39748368 PMC: 11697962. DOI: 10.1186/s12929-024-01095-6.


Cartilage-targeting peptide-modified cerium oxide nanoparticles alleviate oxidative stress and cartilage damage in osteoarthritis.

Zhuang H, Ren X, Li H, Zhang Y, Zhou P J Nanobiotechnology. 2024; 22(1):784.

PMID: 39702137 PMC: 11657866. DOI: 10.1186/s12951-024-03068-1.


Insight into the Functional Dynamics and Challenges of Exosomes in Pharmaceutical Innovation and Precision Medicine.

Sharma A, Yadav A, Nandy A, Ghatak S Pharmaceutics. 2024; 16(6).

PMID: 38931833 PMC: 11206934. DOI: 10.3390/pharmaceutics16060709.


MRI-based microthrombi detection in stroke with polydopamine iron oxide.

Jacqmarcq C, Picot A, Flon J, Lebrun F, Martinez de Lizarrondo S, Naveau M Nat Commun. 2024; 15(1):5070.

PMID: 38871729 PMC: 11176332. DOI: 10.1038/s41467-024-49480-x.


Extracellular Vesicle and Lipoprotein Interactions.

Ghebosu R, Pendiuk Goncalves J, Wolfram J Nano Lett. 2023; 24(1):1-8.

PMID: 38122812 PMC: 10872241. DOI: 10.1021/acs.nanolett.3c03579.


References
1.
Cirstoiu-Hapca A, Buchegger F, Lange N, Bossy L, Gurny R, Delie F . Benefit of anti-HER2-coated paclitaxel-loaded immuno-nanoparticles in the treatment of disseminated ovarian cancer: Therapeutic efficacy and biodistribution in mice. J Control Release. 2010; 144(3):324-31. DOI: 10.1016/j.jconrel.2010.02.026. View

2.
Caracciolo G, Cardarelli F, Pozzi D, Salomone F, Maccari G, Bardi G . Selective targeting capability acquired with a protein corona adsorbed on the surface of 1,2-dioleoyl-3-trimethylammonium propane/DNA nanoparticles. ACS Appl Mater Interfaces. 2013; 5(24):13171-9. DOI: 10.1021/am404171h. View

3.
Ma X, Zhao Y, Liang X . Theranostic nanoparticles engineered for clinic and pharmaceutics. Acc Chem Res. 2011; 44(10):1114-22. DOI: 10.1021/ar2000056. View

4.
Pelaz B, Charron G, Pfeiffer C, Zhao Y, de la Fuente J, Liang X . Interfacing engineered nanoparticles with biological systems: anticipating adverse nano-bio interactions. Small. 2012; 9(9-10):1573-84. DOI: 10.1002/smll.201201229. View

5.
Mahmoudi M, Shokrgozar M, Sardari S, Moghadam M, Vali H, Laurent S . Irreversible changes in protein conformation due to interaction with superparamagnetic iron oxide nanoparticles. Nanoscale. 2011; 3(3):1127-38. DOI: 10.1039/c0nr00733a. View