» Articles » PMID: 31657111

Combinatorial Prediction of Marker Panels from Single-cell Transcriptomic Data

Overview
Journal Mol Syst Biol
Specialty Molecular Biology
Date 2019 Oct 29
PMID 31657111
Citations 54
Authors
Affiliations
Soon will be listed here.
Abstract

Single-cell transcriptomic studies are identifying novel cell populations with exciting functional roles in various in vivo contexts, but identification of succinct gene marker panels for such populations remains a challenge. In this work, we introduce COMET, a computational framework for the identification of candidate marker panels consisting of one or more genes for cell populations of interest identified with single-cell RNA-seq data. We show that COMET outperforms other methods for the identification of single-gene panels and enables, for the first time, prediction of multi-gene marker panels ranked by relevance. Staining by flow cytometry assay confirmed the accuracy of COMET's predictions in identifying marker panels for cellular subtypes, at both the single- and multi-gene levels, validating COMET's applicability and accuracy in predicting favorable marker panels from transcriptomic input. COMET is a general non-parametric statistical framework and can be used as-is on various high-throughput datasets in addition to single-cell RNA-sequencing data. COMET is available for use via a web interface (http://www.cometsc.com/) or a stand-alone software package (https://github.com/MSingerLab/COMETSC).

Citing Articles

snRNA-seq of long-preserved FFPE samples from colorectal liver metastasis lesions with diverse prognoses.

Chen H, Zhang X, Cheng Q, Shen X, Zeng L, Wang Y Sci Data. 2024; 11(1):1434.

PMID: 39725704 PMC: 11671580. DOI: 10.1038/s41597-024-04323-8.


Hierarchical marker genes selection in scRNA-seq analysis.

Sun Y, Qiu P PLoS Comput Biol. 2024; 20(12):e1012643.

PMID: 39666603 PMC: 11637363. DOI: 10.1371/journal.pcbi.1012643.


Probe set selection for targeted spatial transcriptomics.

Kuemmerle L, Luecken M, Firsova A, Barros de Andrade E Sousa L, Strasser L, Mekki I Nat Methods. 2024; 21(12):2260-2270.

PMID: 39558096 PMC: 11621025. DOI: 10.1038/s41592-024-02496-z.


Computational identification of surface markers for isolating distinct subpopulations from heterogeneous cancer cell populations.

Gardner A, Jost T, Morgan D, Brock A NPJ Syst Biol Appl. 2024; 10(1):120.

PMID: 39420005 PMC: 11487074. DOI: 10.1038/s41540-024-00441-6.


scPanel: a tool for automatic identification of sparse gene panels for generalizable patient classification using scRNA-seq datasets.

Xie Y, Yang J, Ouyang J, Petretto E Brief Bioinform. 2024; 25(6).

PMID: 39350339 PMC: 11442147. DOI: 10.1093/bib/bbae482.


References
1.
Pillai S, Cariappa A, Moran S . Marginal zone B cells. Annu Rev Immunol. 2005; 23:161-96. DOI: 10.1146/annurev.immunol.23.021704.115728. View

2.
Spallanzani R, Zemmour D, Xiao T, Jayewickreme T, Li C, Bryce P . Distinct immunocyte-promoting and adipocyte-generating stromal components coordinate adipose tissue immune and metabolic tenors. Sci Immunol. 2019; 4(35). PMC: 6648660. DOI: 10.1126/sciimmunol.aaw3658. View

3.
Ntranos V, Yi L, Melsted P, Pachter L . A discriminative learning approach to differential expression analysis for single-cell RNA-seq. Nat Methods. 2019; 16(2):163-166. DOI: 10.1038/s41592-018-0303-9. View

4.
Huynh-Thu V, Irrthum A, Wehenkel L, Geurts P . Inferring regulatory networks from expression data using tree-based methods. PLoS One. 2010; 5(9). PMC: 2946910. DOI: 10.1371/journal.pone.0012776. View

5.
Meuer S, Fitzgerald K, Hussey R, Hodgdon J, Schlossman S, Reinherz E . Clonotypic structures involved in antigen-specific human T cell function. Relationship to the T3 molecular complex. J Exp Med. 1983; 157(2):705-19. PMC: 2186929. DOI: 10.1084/jem.157.2.705. View