» Articles » PMID: 31642316

MiR-326 Inhibits Inflammation and Promotes Autophagy in Silica-Induced Pulmonary Fibrosis Through Targeting TNFSF14 and PTBP1

Overview
Specialty Toxicology
Date 2019 Oct 24
PMID 31642316
Citations 31
Authors
Affiliations
Soon will be listed here.
Abstract

Silicosis is a kind of irreversible pulmonary fibrosis induced by the long-term inhalation of silica particles. The therapeutic strategy based on the microRNAs might be an effective way for the treatment of silicosis. Our previous miRNA microarray data indicated that miR-326 was decreased in the mouse lung tissues of silica-induced pulmonary fibrosis. However, the specific functions of miR-326 on silica-induced pulmonary fibrosis remain unclear. The objective was to determine the expression and the biological effects of miR-326 in silica-induced pulmonary fibrosis. Methods included mouse models of silica-induced pulmonary fibrosis and miR-326 intervention that were established separately to explore the effect of miR-326 . The cell models of SiO-treated lung epithelial cells (HBE and A549) and TGF-β1-stimulated lung fibroblast cells (MRC-5 and NIH/3T3) were used to investigate the mechanism of miR-326 . Hematoxylin and eosin staining was used to evaluate the severity and distribution of fibrosis of mouse lung tissues. Western blot and immunofluorescence assays were performed to measure the downstream molecules of miR-326. Transmission electron microscopy pictures showed the autophagy activity. The results showed miR-326 is down-regulated in the fibrotic lung tissues of silica-treated mice, while increased expression of miR-326 attenuates silica-induced pulmonary fibrosis . Tumor necrosis factor superfamily-14 (TNFSF14) and polypyrimidine tract-binding protein 1 (PTBP1) are identified as the targets of miR-326. MiR-326 dampens pulmonary inflammation through targeting TNFSF14 and promotes autophagy activity of fibroblasts through targeting PTBP1. LncRNA HOTAIR facilitates inflammation via sponging miR-326. In conclusion, we demonstrate that miR-326 inhibits inflammation and promotes autophagy activity by targeting TNFSF14 and PTBP1 separately to alleviate silica-induced pulmonary fibrosis. Our results might shed new light on the therapeutic strategies for silica-induced pulmonary fibrosis.

Citing Articles

Angiotensin-Converting Enzyme 2 Enhances Autophagy via the Consumption of miR-326 in a Mouse Model of Acute Lung Injury.

Lin X, Gao F Biochem Genet. 2025; .

PMID: 39869241 DOI: 10.1007/s10528-025-11040-3.


A comprehensive retrospect on the current perspectives and future prospects of pneumoconiosis.

Hou X, Wei Z, Jiang X, Wei C, Dong L, Li Y Front Public Health. 2025; 12():1435840.

PMID: 39866352 PMC: 11757636. DOI: 10.3389/fpubh.2024.1435840.


NLRP3 inflammasome mediates abnormal epithelial regeneration and distal lung remodeling in silica‑induced lung fibrosis.

Zhou H, Zhang Q, Liu C, Fan J, Huang W, Li N Int J Mol Med. 2024; 53(3).

PMID: 38240085 PMC: 10836498. DOI: 10.3892/ijmm.2024.5349.


MiR-326-mediated overexpression of NFIB offsets TGF-β induced epithelial to mesenchymal transition and reverses lung fibrosis.

Pattnaik B, Negi V, Chaudhuri R, Desiraju K, Faizan M, Akhtar A Cell Mol Life Sci. 2023; 80(12):357.

PMID: 37950757 PMC: 11072886. DOI: 10.1007/s00018-023-05005-1.


Celastrus orbiculatus extract suppresses gastric cancer stem cells through the TGF-β/Smad signaling pathway.

Ni T, Chu Z, Tao L, Zhao Y, Lv M, Zhu M J Nat Med. 2023; 78(1):100-113.

PMID: 37817006 DOI: 10.1007/s11418-023-01748-0.