» Articles » PMID: 31633062

High-fidelity Endonuclease Variant HypaCas9 Facilitates Accurate Allele-specific Gene Modification in Mouse Zygotes

Overview
Journal Commun Biol
Specialty Biology
Date 2019 Oct 22
PMID 31633062
Citations 27
Authors
Affiliations
Soon will be listed here.
Abstract

CRISPR/Cas9 has been widely used for the efficient generation of genetically modified animals; however, this system could have unexpected off-target effects. In the present study, we confirmed the validity of a high-fidelity Cas9 variant, HypaCas9, for accurate genome editing in mouse zygotes. HypaCas9 efficiently modified the target locus while minimizing off-target effects even in a single-nucleotide mismatched sequence. Furthermore, by applying HypaCas9 to the discrimination of SNP in hybrid strain-derived zygotes, we accomplished allele-specific gene modifications and successfully generated mice with a monoallelic mutation in an essential gene. These results suggest that the improved accuracy of HypaCas9 facilitates the generation of genetically modified animals.

Citing Articles

Leveraging CRISPR gene editing technology to optimize the efficacy, safety and accessibility of CAR T-cell therapy.

Lei T, Wang Y, Zhang Y, Yang Y, Cao J, Huang J Leukemia. 2024; 38(12):2517-2543.

PMID: 39455854 PMC: 11588664. DOI: 10.1038/s41375-024-02444-y.


Perspectives on CRISPR Genome Editing to Prevent Prion Diseases in High-Risk Individuals.

Medd M, Cao Q Biomedicines. 2024; 12(8).

PMID: 39200190 PMC: 11352000. DOI: 10.3390/biomedicines12081725.


Allele-specific CRISPR-Cas9 editing inactivates a single nucleotide variant associated with collagen VI muscular dystrophy.

Bolduc V, Sizov K, Brull A, Esposito E, Chen G, Uapinyoying P Mol Ther Nucleic Acids. 2024; 35(3):102269.

PMID: 39171142 PMC: 11338111. DOI: 10.1016/j.omtn.2024.102269.


Allele-specific CRISPR/Cas9 editing inactivates a single nucleotide variant associated with collagen VI muscular dystrophy.

Bolduc V, Sizov K, Brull A, Esposito E, Chen G, Uapinyoying P bioRxiv. 2024; .

PMID: 38585815 PMC: 10996683. DOI: 10.1101/2024.03.22.586265.


Current Strategies for Increasing Knock-In Efficiency in CRISPR/Cas9-Based Approaches.

Leal A, Herreno-Pachon A, Benincore-Florez E, Karunathilaka A, Tomatsu S Int J Mol Sci. 2024; 25(5).

PMID: 38473704 PMC: 10931195. DOI: 10.3390/ijms25052456.


References
1.
Hwang W, Fu Y, Reyon D, Maeder M, Tsai S, Sander J . Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol. 2013; 31(3):227-9. PMC: 3686313. DOI: 10.1038/nbt.2501. View

2.
Kleinstiver B, Pattanayak V, Prew M, Tsai S, Nguyen N, Zheng Z . High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature. 2016; 529(7587):490-5. PMC: 4851738. DOI: 10.1038/nature16526. View

3.
Li W, Teng F, Li T, Zhou Q . Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nat Biotechnol. 2013; 31(8):684-6. DOI: 10.1038/nbt.2652. View

4.
Brinkman E, Chen T, Amendola M, van Steensel B . Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 2014; 42(22):e168. PMC: 4267669. DOI: 10.1093/nar/gku936. View

5.
Yang Q, Fujii W, Kaji N, Kakuta S, Kada K, Kuwahara M . The essential role of phospho-T38 CPI-17 in the maintenance of physiological blood pressure using genetically modified mice. FASEB J. 2017; 32(4):2095-2109. DOI: 10.1096/fj.201700794R. View