» Articles » PMID: 31619671

Ultrasensitive MoS Photodetector by Serial Nano-bridge Multi-heterojunction

Overview
Journal Nat Commun
Specialty Biology
Date 2019 Oct 18
PMID 31619671
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

The recent reports of various photodetectors based on molybdenum disulfide (MoS) field effect transistors showed that it was difficult to obtain optoelectronic performances in the broad detection range [visible-infrared (IR)] applicable to various fields. Here, by forming a mono-/multi-layer nano-bridge multi-heterojunction structure (more than > 300 junctions with 25 nm intervals) through the selective layer control of multi-layer MoS, a photodetector with ultrasensitive optoelectronic performances in a broad spectral range (photoresponsivity of 2.67 × 10 A/W at λ = 520 nm and 1.65 × 10 A/W at λ = 1064 nm) superior to the previously reported MoS-based photodetectors could be successfully fabricated. The nano-bridge multi-heterojunction is believed to be an important device technology that can be applied to broadband light sensing, highly sensitive fluorescence imaging, ultrasensitive biomedical diagnostics, and ultrafast optoelectronic integrated circuits through the formation of a nanoscale serial multi-heterojunction, just by adding a selective layer control process.

Citing Articles

High Performance Phototransistor Based on 0D-CsPbBr/2D-MoS Heterostructure with Gate Tunable Photo-Response.

Yang C, Xie Y, Zheng L, Liu H, Liu P, Wang F Nanomaterials (Basel). 2025; 15(4).

PMID: 39997870 PMC: 11858019. DOI: 10.3390/nano15040307.


Progress in Advanced Infrared Optoelectronic Sensors.

Yu X, Ji Y, Shen X, Le X Nanomaterials (Basel). 2024; 14(10).

PMID: 38786801 PMC: 11123936. DOI: 10.3390/nano14100845.


Strain modulation in crumpled Si nanomembranes: Light detection beyond the Si absorption limit.

Katiyar A, Kim B, Lee G, Kim Y, Kim J, Kim J Sci Adv. 2024; 10(2):eadg7200.

PMID: 38215204 PMC: 10786413. DOI: 10.1126/sciadv.adg7200.


Laser-Synthesized 2D-MoS Nanostructured Photoconductors.

Salimon I, Zharkova E, Averchenko A, Kumar J, Somov P, Abbas O Micromachines (Basel). 2023; 14(5).

PMID: 37241659 PMC: 10222115. DOI: 10.3390/mi14051036.


Stabilization of the Nano-Sized 1T Phase through Rhenium Doping in the Metal-Organic CVD MoS Films.

Romanov R, Zabrosaev I, Kozodaev M, Yakubovsky D, Tatmyshevskiy M, Timofeev A ACS Omega. 2023; 8(19):16579-16586.

PMID: 37214699 PMC: 10193411. DOI: 10.1021/acsomega.2c06794.


References
1.
Kim K, Kim K, Nam Y, Jeon J, Yim S, Singh E . Atomic Layer Etching Mechanism of MoS for Nanodevices. ACS Appl Mater Interfaces. 2017; 9(13):11967-11976. DOI: 10.1021/acsami.6b15886. View

2.
Jariwala D, Sangwan V, Lauhon L, Marks T, Hersam M . Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano. 2014; 8(2):1102-20. DOI: 10.1021/nn500064s. View

3.
Jeon S, Ahn S, Song I, Kim C, Chung U, Lee E . Gated three-terminal device architecture to eliminate persistent photoconductivity in oxide semiconductor photosensor arrays. Nat Mater. 2012; 11(4):301-5. DOI: 10.1038/nmat3256. View

4.
Cho K, Heo K, Baik C, Choi J, Jeong H, Hwang S . Color-selective photodetection from intermediate colloidal quantum dots buried in amorphous-oxide semiconductors. Nat Commun. 2017; 8(1):840. PMC: 5635032. DOI: 10.1038/s41467-017-00893-x. View

5.
Kufer D, Konstantatos G . Highly Sensitive, Encapsulated MoS2 Photodetector with Gate Controllable Gain and Speed. Nano Lett. 2015; 15(11):7307-13. DOI: 10.1021/acs.nanolett.5b02559. View