» Articles » PMID: 31573426

Always a Price to Pay: Hibernation at Low Temperatures Comes with a Trade-off Between Energy Savings and Telomere Damage

Overview
Journal Biol Lett
Specialty Biology
Date 2019 Oct 2
PMID 31573426
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

We experimentally tested the costs of deep torpor at low temperatures by comparing telomere dynamics in two species of rodents hibernating at either 3 or 14°C. Our data show that hibernators kept at the warmer temperature had higher arousal frequencies, but maintained longer telomeres than individuals hibernating at the colder temperature. We suggest that the high-energy demand of frequent arousals is counteracted by a lower temperature differential between torpid and euthermic body temperature and that telomere length is restored during arousals when the body temperature is returned to normothermic values. Taken together, our study shows that hibernation at low body temperatures comes with costs on a cellular level and that hibernators need to actively counterbalance the shortening of telomeres.

Citing Articles

Food deprivation is associated with telomere elongation during hibernation in a primate.

Blanco M, Smith D, Greene L, Lin J, Klopfer P Biol Lett. 2025; 21(2):20240531.

PMID: 39933571 PMC: 11813570. DOI: 10.1098/rsbl.2024.0531.


Microbial urea-nitrogen recycling in arctic ground squirrels: the effect of ambient temperature of hibernation.

Sadowska J, Carlson K, Buck C, Lee T, Duddleston K J Comp Physiol B. 2024; 194(6):909-924.

PMID: 39237834 PMC: 11511772. DOI: 10.1007/s00360-024-01579-9.


Telomere dynamics during hibernation in a tropical primate.

Blanco M, Smith D, Greene L, Yoder A, Ehmke E, Lin J J Comp Physiol B. 2024; 194(2):213-219.

PMID: 38466418 DOI: 10.1007/s00360-024-01541-9.


Seasonal variation in telomerase activity and telomere dynamics in a hibernating rodent, the garden dormouse ().

Galindo-Lalana C, Hoelzl F, Zahn S, Habold C, Cornils J, Giroud S Front Physiol. 2023; 14:1298505.

PMID: 38074328 PMC: 10698472. DOI: 10.3389/fphys.2023.1298505.


Comparative transcriptomics of the garden dormouse hypothalamus during hibernation.

Haugg E, Borner J, Stalder G, Kubber-Heiss A, Giroud S, Herwig A FEBS Open Bio. 2023; 14(2):241-257.

PMID: 37925593 PMC: 10839406. DOI: 10.1002/2211-5463.13731.


References
1.
van Breukelen F, Martin S . Invited review: molecular adaptations in mammalian hibernators: unique adaptations or generalized responses?. J Appl Physiol (1985). 2002; 92(6):2640-7. DOI: 10.1152/japplphysiol.01007.2001. View

2.
Turbill C, Ruf T, Smith S, Bieber C . Seasonal variation in telomere length of a hibernating rodent. Biol Lett. 2013; 9(2):20121095. PMC: 3639760. DOI: 10.1098/rsbl.2012.1095. View

3.
Rojas A, Kortner G, Geiser F . Cool running: locomotor performance at low body temperature in mammals. Biol Lett. 2012; 8(5):868-70. PMC: 3440967. DOI: 10.1098/rsbl.2012.0269. View

4.
Neumann A, Watson C, Noble J, Pickett H, Tam P, Reddel R . Alternative lengthening of telomeres in normal mammalian somatic cells. Genes Dev. 2013; 27(1):18-23. PMC: 3553280. DOI: 10.1101/gad.205062.112. View

5.
Kruman I, Ilyasova E, Rudchenko S, Khurkhulu Z . The intestinal epithelial cells of ground squirrel (Citellus undulatus) accumulate at G2 phase of the cell cycle throughout a bout of hibernation. Comp Biochem Physiol A Comp Physiol. 1988; 90(2):233-6. DOI: 10.1016/0300-9629(88)91109-7. View