» Articles » PMID: 31545172

An Arbitrary-spectrum Spatial Visual Stimulator for Vision Research

Overview
Journal Elife
Specialty Biology
Date 2019 Sep 24
PMID 31545172
Citations 32
Authors
Affiliations
Soon will be listed here.
Abstract

Visual neuroscientists require accurate control of visual stimulation. However, few stimulator solutions simultaneously offer high spatio-temporal resolution and free control over the spectra of the light sources, because they rely on off-the-shelf technology developed for human trichromatic vision. Importantly, consumer displays fail to drive UV-shifted short wavelength-sensitive photoreceptors, which strongly contribute to visual behaviour in many animals, including mice, zebrafish and fruit flies. Moreover, many non-mammalian species feature more than three spectral photoreceptor types. Here, we present a flexible, spatial visual stimulator with up to six arbitrary spectrum chromatic channels. It combines a standard digital light processing engine with open source hard- and software that can be easily adapted to the experimentalist's needs. We demonstrate the capability of this general visual stimulator experimentally in the in vitro mouse retinal whole-mount and the in vivo zebrafish. With this work, we intend to start a community effort of sharing and developing a common stimulator design for vision research.

Citing Articles

Nitric oxide modulates contrast suppression in a subset of mouse retinal ganglion cells.

Gonschorek D, Goldin M, Oesterle J, Schwerd-Kleine T, Arlinghaus R, Zhao Z Elife. 2025; 13.

PMID: 39783858 PMC: 11717361. DOI: 10.7554/eLife.98742.


Asymmetric Activation of Retinal ON and OFF Pathways by AOSLO Raster-Scanned Visual Stimuli.

Patterson S, Cai Y, Yang Q, Merigan W, Williams D bioRxiv. 2025; .

PMID: 39763934 PMC: 11702774. DOI: 10.1101/2024.12.17.628952.


A chromatic feature detector in the retina signals visual context changes.

Hofling L, Szatko K, Behrens C, Deng Y, Qiu Y, Klindt D Elife. 2024; 13.

PMID: 39365730 PMC: 11452179. DOI: 10.7554/eLife.86860.


Development of an Innovative Pupillometer Able to Selectively Stimulate the Eye's Fundus Photoreceptor Cells.

Gibertoni G, Hromov A, Piffaretti F, Geiser M Diagnostics (Basel). 2024; 14(17).

PMID: 39272724 PMC: 11394444. DOI: 10.3390/diagnostics14171940.


Asymmetric distribution of color-opponent response types across mouse visual cortex supports superior color vision in the sky.

Franke K, Cai C, Ponder K, Fu J, Sokoloski S, Berens P Elife. 2024; 12.

PMID: 39234821 PMC: 11377037. DOI: 10.7554/eLife.89996.


References
1.
Rohlich P, van Veen T, Szel A . Two different visual pigments in one retinal cone cell. Neuron. 1994; 13(5):1159-66. DOI: 10.1016/0896-6273(94)90053-1. View

2.
Kemmler R, Schultz K, Dedek K, Euler T, Schubert T . Differential regulation of cone calcium signals by different horizontal cell feedback mechanisms in the mouse retina. J Neurosci. 2014; 34(35):11826-43. PMC: 6608415. DOI: 10.1523/JNEUROSCI.0272-14.2014. View

3.
Yang W, Srivastava P, Han S, Jing L, Tu C, Chen S . Optomechanical Time-Gated Fluorescence Imaging Using Long-Lived Silicon Quantum Dot Nanoparticles. Anal Chem. 2019; 91(9):5499-5503. DOI: 10.1021/acs.analchem.9b00517. View

4.
Cronin T, Bok M . Photoreception and vision in the ultraviolet. J Exp Biol. 2016; 219(Pt 18):2790-2801. DOI: 10.1242/jeb.128769. View

5.
Branchek T, BreMiller R . The development of photoreceptors in the zebrafish, Brachydanio rerio. I. Structure. J Comp Neurol. 1984; 224(1):107-15. DOI: 10.1002/cne.902240109. View