» Articles » PMID: 31543897

Compositional Analysis of Flatworm Genomes Shows Strong Codon Usage Biases Across All Classes

Overview
Journal Front Genet
Date 2019 Sep 24
PMID 31543897
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

In the present work, we performed a comparative genome-wide analysis of 22 species representative of the main clades and lifestyles of the phylum Platyhelminthes. We selected a set of 700 orthologous genes conserved in all species, measuring changes in GC content, codon, and amino acid usage in orthologous positions. Values of 3 codon position GC spanned over a wide range, allowing to discriminate two distinctive clusters within freshwater turbellarians, Cestodes and Trematodes respectively. Furthermore, a hierarchical clustering of codon usage data differs remarkably from the phylogenetic tree. Additionally, we detected a synonymous codon usage bias that was more dramatic in extreme GC-poor or GC-rich genomes, i.e., GC-poor Schistosomes preferred to use AT-rich terminated synonymous codons, while GC-rich showed the opposite behavior. Interestingly, these biases impacted the amino acidic usage, with preferred amino acids encoded by codons following the GC content trend. These are associated with non-synonymous substitutions at orthologous positions. The detailed analysis of the synonymous and non-synonymous changes provides evidence for a two-hit mechanism where both mutation and selection forces drive the diverse coding strategies of flatworms.

Citing Articles

Base Composition, Codon Usage, and Patterns of Gene Sequence Evolution in Butterflies.

Nasvall K, Boman J, Talla V, Backstrom N Genome Biol Evol. 2023; 15(8).

PMID: 37565492 PMC: 10462419. DOI: 10.1093/gbe/evad150.


Codon Usage Bias Correlates With Gene Length in Neurodegeneration Associated Genes.

Khandia R, Saeed M, Alharbi A, Ashraf G, Greig N, Kamal M Front Neurosci. 2022; 16:895607.

PMID: 35860292 PMC: 9289476. DOI: 10.3389/fnins.2022.895607.


Codon usage bias and dinucleotide preference in 29 Drosophila species.

Kokate P, Techtmann S, Werner T G3 (Bethesda). 2021; 11(8).

PMID: 34849812 PMC: 8496323. DOI: 10.1093/g3journal/jkab191.


First next-generation sequencing data for Haploporidae (Digenea: Haploporata): characterization of complete mitochondrial genome and ribosomal operon for Parasaccocoelium mugili Zhukov, 1971.

Atopkin D, Semenchenko A, Solodovnik D, Ivashko Y, Vinnikov K Parasitol Res. 2021; 120(6):2037-2046.

PMID: 33893550 DOI: 10.1007/s00436-021-07159-y.

References
1.
Fernandez V, Zavala A, Musto H . Evidence for translational selection in codon usage in Echinococcus spp. Parasitology. 2001; 123(Pt 2):203-9. DOI: 10.1017/s0031182001008150. View

2.
Paradis E, Claude J, Strimmer K . APE: Analyses of Phylogenetics and Evolution in R language. Bioinformatics. 2004; 20(2):289-90. DOI: 10.1093/bioinformatics/btg412. View

3.
Le T, McManus D, Blair D . Codon usage and bias in mitochondrial genomes of parasitic platyhelminthes. Korean J Parasitol. 2004; 42(4):159-67. PMC: 2717381. DOI: 10.3347/kjp.2004.42.4.159. View

4.
Cutter A, Wasmuth J, Blaxter M . The evolution of biased codon and amino acid usage in nematode genomes. Mol Biol Evol. 2006; 23(12):2303-15. DOI: 10.1093/molbev/msl097. View

5.
Sharp P, Emery L, Zeng K . Forces that influence the evolution of codon bias. Philos Trans R Soc Lond B Biol Sci. 2010; 365(1544):1203-12. PMC: 2871821. DOI: 10.1098/rstb.2009.0305. View