» Articles » PMID: 31531391

Robust and Interpretable PAM50 Reclassification Exhibits Survival Advantage for Myoepithelial and Immune Phenotypes

Overview
Date 2019 Sep 19
PMID 31531391
Citations 23
Authors
Affiliations
Soon will be listed here.
Abstract

We introduce a classification of breast tumors into seven classes which are more clearly defined by interpretable mRNA signatures along the PAM50 gene set than the five traditional PAM50 intrinsic subtypes. Each intrinsic subtype is partially concordant with one of our classes, and the two additional classes correspond to division of the classes concordant with the Luminal B and the Normal intrinsic subtypes along expression of the Her2 gene group. Our Normal class shows similarity with the myoepithelial mammary cell phenotype, including TP63 expression (specificity: 80.8% and sensitivity: 82.8%), and exhibits the best overall survival (89.6% at 5 years). Though Luminal A tumors are traditionally considered the least aggressive, our analysis shows that only the Luminal A tumors which are now classified as myoepithelial have this phenotype, while tumors in our luminal class (concordant with Luminal A) may be more aggressive than previously thought. We also find that patients with basal tumors surviving to 48 months exhibit favorable continued survival rates when certain markers for B lymphocytes are present and poor survival rates when they are absent, which is consistent with recent findings.

Citing Articles

The Breast Cancer Classifier refines molecular breast cancer classification to delineate the HER2-low subtype.

Turova P, Kushnarev V, Baranov O, Butusova A, Menshikova S, Yong S NPJ Breast Cancer. 2025; 11(1):19.

PMID: 39979291 PMC: 11842814. DOI: 10.1038/s41523-025-00723-0.


Radiogenomics: bridging the gap between imaging and genomics for precision oncology.

He W, Huang W, Zhang L, Wu X, Zhang S, Zhang B MedComm (2020). 2024; 5(9):e722.

PMID: 39252824 PMC: 11381657. DOI: 10.1002/mco2.722.


DNA methylation profiling deciphers three EMT subtypes with distinct prognoses and therapeutic vulnerabilities in breast cancer.

Sun S, Chen S, Wang N, Hong Z, Sun Y, Xu Y J Cancer. 2024; 15(15):4922-4938.

PMID: 39132156 PMC: 11310866. DOI: 10.7150/jca.96096.


Comprehensive multi-omics analysis of breast cancer reveals distinct long-term prognostic subtypes.

Sharma A, Debik J, Naume B, Ohnstad H, Bathen T, Giskeodegard G Oncogenesis. 2024; 13(1):22.

PMID: 38871719 PMC: 11176181. DOI: 10.1038/s41389-024-00521-6.


MicroRNAs as Molecular Biomarkers for the Characterization of Basal-like Breast Tumor Subtype.

Tariq M, Richard V, Kerin M Biomedicines. 2023; 11(11).

PMID: 38002007 PMC: 10669494. DOI: 10.3390/biomedicines11113007.


References
1.
Maddocks O, Berkers C, Mason S, Zheng L, Blyth K, Gottlieb E . Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature. 2012; 493(7433):542-6. PMC: 6485472. DOI: 10.1038/nature11743. View

2.
Coates A, Winer E, Goldhirsch A, Gelber R, Gnant M, Piccart-Gebhart M . Tailoring therapies--improving the management of early breast cancer: St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2015. Ann Oncol. 2015; 26(8):1533-46. PMC: 4511219. DOI: 10.1093/annonc/mdv221. View

3.
Pereira B, Chin S, Rueda O, Vollan H, Provenzano E, Bardwell H . The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nat Commun. 2016; 7:11479. PMC: 4866047. DOI: 10.1038/ncomms11479. View

4.
Perou C, Sorlie T, Eisen M, van de Rijn M, Jeffrey S, Rees C . Molecular portraits of human breast tumours. Nature. 2000; 406(6797):747-52. DOI: 10.1038/35021093. View

5.
Nicolau M, Levine A, Carlsson G . Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival. Proc Natl Acad Sci U S A. 2011; 108(17):7265-70. PMC: 3084136. DOI: 10.1073/pnas.1102826108. View