» Articles » PMID: 31522114

PyBioNetFit and the Biological Property Specification Language

Overview
Journal iScience
Publisher Cell Press
Date 2019 Sep 16
PMID 31522114
Citations 26
Authors
Affiliations
Soon will be listed here.
Abstract

In systems biology modeling, important steps include model parameterization, uncertainty quantification, and evaluation of agreement with experimental observations. To help modelers perform these steps, we developed the software PyBioNetFit, which in addition supports checking models against known system properties and solving design problems. PyBioNetFit introduces Biological Property Specification Language (BPSL) for the formal declaration of system properties. BPSL allows qualitative data to be used alone or in combination with quantitative data. PyBioNetFit performs parameterization with parallelized metaheuristic optimization algorithms that work directly with existing model definition standards: BioNetGen Language (BNGL) and Systems Biology Markup Language (SBML). We demonstrate PyBioNetFit's capabilities by solving various example problems, including the challenging problem of parameterizing a 153-parameter model of cell cycle control in yeast based on both quantitative and qualitative data. We demonstrate the model checking and design applications of PyBioNetFit and BPSL by analyzing a model of targeted drug interventions in autophagy signaling.

Citing Articles

The Constrained Disorder Principle Overcomes the Challenges of Methods for Assessing Uncertainty in Biological Systems.

Ilan Y J Pers Med. 2025; 15(1).

PMID: 39852203 PMC: 11767140. DOI: 10.3390/jpm15010010.


Reusable rule-based cell cycle model explains compartment-resolved dynamics of 16 observables in RPE-1 cells.

Lang P, Penas D, Banga J, Weindl D, Novak B PLoS Comput Biol. 2024; 20(1):e1011151.

PMID: 38190398 PMC: 10773963. DOI: 10.1371/journal.pcbi.1011151.


Epigenetic targeting of autophagy for cancer: DNA and RNA methylation.

Lin L, Zhao Y, Zheng Q, Zhang J, Li H, Wu W Front Oncol. 2023; 13:1290330.

PMID: 38148841 PMC: 10749975. DOI: 10.3389/fonc.2023.1290330.


BioNetGMMFit: estimating parameters of a BioNetGen model from time-stamped snapshots of single cells.

Wu J, Stewart W, Jayaprakash C, Das J NPJ Syst Biol Appl. 2023; 9(1):46.

PMID: 37736766 PMC: 10516955. DOI: 10.1038/s41540-023-00299-0.


A plausible identifiable model of the canonical NF-κB signaling pathway.

Jaruszewicz-Blonska J, Kosiuk I, Prus W, Lipniacki T PLoS One. 2023; 18(6):e0286416.

PMID: 37267242 PMC: 10237389. DOI: 10.1371/journal.pone.0286416.


References
1.
Harris L, Hogg J, Tapia J, Sekar J, Gupta S, Korsunsky I . BioNetGen 2.2: advances in rule-based modeling. Bioinformatics. 2016; 32(21):3366-3368. PMC: 5079481. DOI: 10.1093/bioinformatics/btw469. View

2.
Chylek L, Akimov V, Dengjel J, Rigbolt K, Hu B, Hlavacek W . Phosphorylation site dynamics of early T-cell receptor signaling. PLoS One. 2014; 9(8):e104240. PMC: 4141737. DOI: 10.1371/journal.pone.0104240. View

3.
Mukhopadhyay H, Cordoba S, Maini P, Anton van der Merwe P, Dushek O . Systems model of T cell receptor proximal signaling reveals emergent ultrasensitivity. PLoS Comput Biol. 2013; 9(3):e1003004. PMC: 3610635. DOI: 10.1371/journal.pcbi.1003004. View

4.
Xue M, Del Bigio M . Intracerebral injection of autologous whole blood in rats: time course of inflammation and cell death. Neurosci Lett. 2000; 283(3):230-2. DOI: 10.1016/s0304-3940(00)00971-x. View

5.
Kozer N, Barua D, Orchard S, Nice E, Burgess A, Hlavacek W . Exploring higher-order EGFR oligomerisation and phosphorylation--a combined experimental and theoretical approach. Mol Biosyst. 2013; 9(7):1849-63. PMC: 3698845. DOI: 10.1039/c3mb70073a. View