» Articles » PMID: 31493862

Asymmetric Bilayers by Hemifusion: Method and Leaflet Behaviors

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 2019 Sep 9
PMID 31493862
Citations 30
Authors
Affiliations
Soon will be listed here.
Abstract

We describe a new method to prepare asymmetric giant unilamellar vesicles (aGUVs) via hemifusion. Hemifusion of giant unilamellar vesicles and a supported lipid bilayer, triggered by calcium, promotes the lipid exchange of the fused outer leaflets mediated by lipid diffusion. We used different fluorescent dyes to monitor the inner and the outer leaflets of the unsupported aGUVs. We confirmed that almost all newly exchanged lipids in the aGUVs are found in the outer leaflet of these asymmetric vesicles. In addition, we test the stability of the aGUVs formed by hemifusion in preserving their contents during the procedure. For aGUVs prepared from the hemifusion of giant unilamellar vesicles composed of 1,2-distearoyl-sn-glycero-3-phosphocholine/1,2-dioleoyl-sn-glycero-3-phosphocholine/cholesterol = 0.39/0.39/0.22 and a supported lipid bilayer of 1,2-dioleoyl-sn-glycero-3-phosphocholine/cholesterol = 0.8/0.2, we observed the exchanged lipids to alter the bilayer properties. To access the physical and chemical properties of the asymmetric bilayer, we monitored the dye partition coefficients of individual leaflets and the generalized polarization of the fluorescence probe 6-dodecanoyl-2-[ N-methyl-N-(carboxymethyl)amino] naphthalene, a sensor for the lipid packing/order of its surroundings. For a high percentage of lipid exchange (>70%), the dye partition indicates induced-disordered and induced-ordered domains. The induced domains have distinct lipid packing/order compared to the symmetric liquid-disordered and liquid-ordered domains.

Citing Articles

Engineering Phosphatidylserine Containing Asymmetric Giant Unilamellar Vesicles.

McDonough J, Paratore T, Ketelhohn H, DeCilio B, Ross A, Gericke A Membranes (Basel). 2024; 14(9).

PMID: 39330522 PMC: 11433827. DOI: 10.3390/membranes14090181.


Disruption of liquid/liquid phase separation in asymmetric GUVs prepared by hemifusion.

Kennison-Cook K, Heberle F bioRxiv. 2024; .

PMID: 38979299 PMC: 11230200. DOI: 10.1101/2024.06.21.600037.


Bilayer Charge Asymmetry and Oil Residues Destabilize Membranes upon Poration.

Leomil F, Stephan M, Pramanik S, Riske K, Dimova R Langmuir. 2024; 40(9):4719-4731.

PMID: 38373285 PMC: 10919074. DOI: 10.1021/acs.langmuir.3c03370.


Spontaneous curvature generation by peptides in asymmetric bilayers.

Park S, Rice A, Im W, Pastor R J Comput Chem. 2023; 45(9):512-522.

PMID: 37991280 PMC: 10922693. DOI: 10.1002/jcc.27261.


Experimentally determined leaflet-leaflet phase diagram of an asymmetric lipid bilayer.

Enoki T, Heberle F Proc Natl Acad Sci U S A. 2023; 120(46):e2308723120.

PMID: 37939082 PMC: 10655556. DOI: 10.1073/pnas.2308723120.


References
1.
Kim H, Choo H, Jung S, Ko Y, Park W, Jeon S . A two-photon fluorescent probe for lipid raft imaging: C-laurdan. Chembiochem. 2007; 8(5):553-9. DOI: 10.1002/cbic.200700003. View

2.
Sanchez S, Tricerri M, Gratton E . Laurdan generalized polarization fluctuations measures membrane packing micro-heterogeneity in vivo. Proc Natl Acad Sci U S A. 2012; 109(19):7314-9. PMC: 3358851. DOI: 10.1073/pnas.1118288109. View

3.
Buboltz J, Feigenson G . A novel strategy for the preparation of liposomes: rapid solvent exchange. Biochim Biophys Acta. 1999; 1417(2):232-45. DOI: 10.1016/s0005-2736(99)00006-1. View

4.
Papahadjopoulos D, Nir S, Duzgunes N . Molecular mechanisms of calcium-induced membrane fusion. J Bioenerg Biomembr. 1990; 22(2):157-79. DOI: 10.1007/BF00762944. View

5.
Enoki T, Heberle F, Feigenson G . FRET Detects the Size of Nanodomains for Coexisting Liquid-Disordered and Liquid-Ordered Phases. Biophys J. 2018; 114(8):1921-1935. PMC: 5937166. DOI: 10.1016/j.bpj.2018.03.014. View