» Articles » PMID: 29694869

FRET Detects the Size of Nanodomains for Coexisting Liquid-Disordered and Liquid-Ordered Phases

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 2018 Apr 26
PMID 29694869
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

Biomembranes with as few as three lipid components can form coexisting liquid-disordered (Ld) and liquid-ordered (Lo) phases. In the coexistence region of Ld and Lo phases, the lipid mixtures 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)/1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/chol or brain sphingomyelin (bSM)/DOPC/chol form micron-scale domains that are easily visualized with light microscopy. Although large domains are not observed in the mixtures DSPC/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/chol and bSM/POPC/chol, lateral heterogeneity is nevertheless detected using techniques with nanometer-scale spatial resolution. We propose a simple and accessible method to measure domain sizes below optical resolution (∼200 nm). We measured nanodomain size for the latter two mixtures by combining experimental Förster resonance energy transfer data with a Monte-Carlo-based analysis. We found a domain radius of 7.5-10 nm for DSPC/POPC/chol, similar to values obtained previously by neutron scattering, and ∼5 nm for bSM/POPC/chol, slightly smaller than measurable by neutron scattering. These analyses also detect the domain-size transition that is observed by fluorescence microscopy in the four-component lipid mixture bSM/DOPC/POPC/chol. Accurate measurements of fluorescent-probe partition coefficients are especially important for the analysis; therefore, we exploit three different methods to measure the partition coefficient of fluorescent molecules between Ld and Lo phases.

Citing Articles

Polar Glycerolipids and Membrane Lipid Rafts.

Zhukov A, Vereshchagin M Int J Mol Sci. 2024; 25(15).

PMID: 39125896 PMC: 11312961. DOI: 10.3390/ijms25158325.


Cryo-EM images of phase-separated lipid bilayer vesicles analyzed with a machine-learning approach.

Sharma K, Doktorova M, Waxham M, Heberle F Biophys J. 2024; 123(17):2877-2891.

PMID: 38689500 PMC: 11393711. DOI: 10.1016/j.bpj.2024.04.029.


Experimentally determined leaflet-leaflet phase diagram of an asymmetric lipid bilayer.

Enoki T, Heberle F Proc Natl Acad Sci U S A. 2023; 120(46):e2308723120.

PMID: 37939082 PMC: 10655556. DOI: 10.1073/pnas.2308723120.


Eukaryotic Cell Membranes: Structure, Composition, Research Methods and Computational Modelling.

Zhukov A, Popov V Int J Mol Sci. 2023; 24(13).

PMID: 37446404 PMC: 10342339. DOI: 10.3390/ijms241311226.


Biophysical studies of lipid nanodomains using different physical characterization techniques.

Kinnun J, Scott H, Bolmatov D, Collier C, Charlton T, Katsaras J Biophys J. 2023; 122(6):931-949.

PMID: 36698312 PMC: 10111277. DOI: 10.1016/j.bpj.2023.01.024.


References
1.
Rieder A, Koller D, Lohner K, Pabst G . Optimizing rapid solvent exchange preparation of multilamellar vesicles. Chem Phys Lipids. 2014; 186:39-44. DOI: 10.1016/j.chemphyslip.2014.12.001. View

2.
Towles K, Brown A, Wrenn S, Dan N . Effect of membrane microheterogeneity and domain size on fluorescence resonance energy transfer. Biophys J. 2007; 93(2):655-67. PMC: 1896247. DOI: 10.1529/biophysj.106.090274. View

3.
Fricke N, Dimova R . GM1 Softens POPC Membranes and Induces the Formation of Micron-Sized Domains. Biophys J. 2016; 111(9):1935-1945. PMC: 5103020. DOI: 10.1016/j.bpj.2016.09.028. View

4.
Moss 3rd F, Boxer S . Atomic Recombination in Dynamic Secondary Ion Mass Spectrometry Probes Distance in Lipid Assemblies: A Nanometer Chemical Ruler. J Am Chem Soc. 2016; 138(51):16737-16744. PMC: 5287923. DOI: 10.1021/jacs.6b10655. View

5.
Usery R, Enoki T, Wickramasinghe S, Weiner M, Tsai W, Kim M . Line Tension Controls Liquid-Disordered + Liquid-Ordered Domain Size Transition in Lipid Bilayers. Biophys J. 2017; 112(7):1431-1443. PMC: 5390056. DOI: 10.1016/j.bpj.2017.02.033. View