6.
Zhao Y, Yue R
. Aging adipose tissue, insulin resistance, and type 2 diabetes. Biogerontology. 2023; 25(1):53-69.
DOI: 10.1007/s10522-023-10067-6.
View
7.
Cobelli C, Renard E, Kovatchev B
. The artificial pancreas: a digital-age treatment for diabetes. Lancet Diabetes Endocrinol. 2014; 2(9):679-81.
PMC: 9888593.
DOI: 10.1016/S2213-8587(14)70126-3.
View
8.
Li B, Li J, Jiang Y, Lan X
. Experience and reflection from China's Xiangya medical big data project. J Biomed Inform. 2019; 93:103149.
DOI: 10.1016/j.jbi.2019.103149.
View
9.
Khodve G, Banerjee S
. Artificial Intelligence in Efficient Diabetes Care. Curr Diabetes Rev. 2022; 19(9):e050922208561.
DOI: 10.2174/1573399819666220905163940.
View
10.
Andres E, Meyer L, Zulfiqar A, Hajjam M, Talha S, Bahougne T
. Telemonitoring in diabetes: evolution of concepts and technologies, with a focus on results of the more recent studies. J Med Life. 2019; 12(3):203-214.
PMC: 6814890.
DOI: 10.25122/jml-2019-0006.
View
11.
Tseng T, Su C, Lai F
. Fast Healthcare Interoperability Resources for Inpatient Deterioration Detection With Time-Series Vital Signs: Design and Implementation Study. JMIR Med Inform. 2022; 10(10):e42429.
PMC: 9614630.
DOI: 10.2196/42429.
View
12.
Ma C, Luo Y, Zhang T, Hao Y, Xie X, Liu X
. Predicting coronary heart disease in Chinese diabetics using machine learning. Comput Biol Med. 2024; 169:107952.
DOI: 10.1016/j.compbiomed.2024.107952.
View
13.
Yin Z, Song Y, Zhang J, Dai Q, Zhang X, Yang X
. AI-Based Hematological Age Predictors and the Association Between Biological Age Acceleration and Type 2 Diabetes Mellitus - Chongqing Municipality, China, 2015-2021. China CDC Wkly. 2024; 6(45):1188-1193.
PMC: 11561367.
DOI: 10.46234/ccdcw2024.240.
View
14.
Chen X, Giles J, Yao Y, Yip W, Meng Q, Berkman L
. The path to healthy ageing in China: a Peking University-Lancet Commission. Lancet. 2022; 400(10367):1967-2006.
PMC: 9801271.
DOI: 10.1016/S0140-6736(22)01546-X.
View
15.
Fagherazzi G, Ravaud P
. Digital diabetes: Perspectives for diabetes prevention, management and research. Diabetes Metab. 2018; 45(4):322-329.
DOI: 10.1016/j.diabet.2018.08.012.
View
16.
Denes-Fazakas L, Simon B, Hartveg A, Kovacs L, Dulf E, Szilagyi L
. Physical Activity Detection for Diabetes Mellitus Patients Using Recurrent Neural Networks. Sensors (Basel). 2024; 24(8).
PMC: 11054023.
DOI: 10.3390/s24082412.
View
17.
Siddiqui S, Zhang Y, Lloret J, Song H, Obradovic Z
. Pain-Free Blood Glucose Monitoring Using Wearable Sensors: Recent Advancements and Future Prospects. IEEE Rev Biomed Eng. 2018; 11:21-35.
DOI: 10.1109/RBME.2018.2822301.
View
18.
Margolis R, Derr L, Dunn M, Huerta M, Larkin J, Sheehan J
. The National Institutes of Health's Big Data to Knowledge (BD2K) initiative: capitalizing on biomedical big data. J Am Med Inform Assoc. 2014; 21(6):957-8.
PMC: 4215061.
DOI: 10.1136/amiajnl-2014-002974.
View
19.
Hu C, Jia W
. Diabetes in China: Epidemiology and Genetic Risk Factors and Their Clinical Utility in Personalized Medication. Diabetes. 2017; 67(1):3-11.
DOI: 10.2337/dbi17-0013.
View
20.
Mader J
. Personal Experiences With Coronavirus Disease 2019 and Diabetes: The Time for Telemedicine is Now. J Diabetes Sci Technol. 2020; 14(4):752-753.
PMC: 7673167.
DOI: 10.1177/1932296820930289.
View