6.
Fetterolf D
. Estimating the economic value of emerging technologies in chronic wound therapy. Int Wound J. 2019; 16(6):1391-1397.
PMC: 6899938.
DOI: 10.1111/iwj.13202.
View
7.
Chan B, Cadarette S, Wodchis W, Wong J, Mittmann N, Krahn M
. Cost-of-illness studies in chronic ulcers: a systematic review. J Wound Care. 2017; 26(sup4):S4-S14.
DOI: 10.12968/jowc.2017.26.Sup4.S4.
View
8.
Romanelli M, Gilligan A, Waycaster C, Dini V
. Difficult-to-heal wounds of mixed arterial/venous and venous etiology: a cost-effectiveness analysis of extracellular matrix. Clinicoecon Outcomes Res. 2016; 8:153-61.
PMC: 4862353.
DOI: 10.2147/CEOR.S104067.
View
9.
Fetterolf D, Holt 4th A, Tucker T, Khan N
. Estimating clinical and economic impact in case management programs. Popul Health Manag. 2010; 13(2):73-82.
DOI: 10.1089/pop.2009.0032.
View
10.
Boulton A, Armstrong D, Albert S, Frykberg R, Hellman R, Kirkman M
. Comprehensive foot examination and risk assessment: a report of the task force of the foot care interest group of the American Diabetes Association, with endorsement by the American Association of Clinical Endocrinologists. Diabetes Care. 2008; 31(8):1679-85.
PMC: 2494620.
DOI: 10.2337/dc08-9021.
View
11.
Barshes N, Saedi S, Wrobel J, Kougias P, Kundakcioglu O, Armstrong D
. A model to estimate cost-savings in diabetic foot ulcer prevention efforts. J Diabetes Complications. 2017; 31(4):700-707.
DOI: 10.1016/j.jdiacomp.2016.12.017.
View
12.
Owens D
. Interpretation of cost-effectiveness analyses. J Gen Intern Med. 1998; 13(10):716-7.
PMC: 1497852.
DOI: 10.1046/j.1525-1497.1998.00211.x.
View
13.
OBRIEN B, Viramontes J
. Willingness to pay: a valid and reliable measure of health state preference?. Med Decis Making. 1994; 14(3):289-97.
DOI: 10.1177/0272989X9401400311.
View
14.
Sherman R, Anderson S, Dal Pan G, Gray G, Gross T, Hunter N
. Real-World Evidence - What Is It and What Can It Tell Us?. N Engl J Med. 2016; 375(23):2293-2297.
DOI: 10.1056/NEJMsb1609216.
View
15.
Koob T, Lim J, Massee M, Zabek N, Denoziere G
. Properties of dehydrated human amnion/chorion composite grafts: Implications for wound repair and soft tissue regeneration. J Biomed Mater Res B Appl Biomater. 2014; 102(6):1353-62.
DOI: 10.1002/jbm.b.33141.
View
16.
Stevens C, Schriger D, Raffetto B, Davis A, Zingmond D, Roby D
. Geographic clustering of diabetic lower-extremity amputations in low-income regions of California. Health Aff (Millwood). 2014; 33(8):1383-90.
PMC: 4242846.
DOI: 10.1377/hlthaff.2014.0148.
View
17.
Fetterolf D
. Notes from the field: the economic value chain in disease management organizations. Dis Manag. 2006; 9(6):316-27.
DOI: 10.1089/dis.2006.9.316.
View
18.
Massee M, Chinn K, Lim J, Godwin L, Young C, Koob T
. Type I and II Diabetic Adipose-Derived Stem Cells Respond to Dehydrated Human Amnion/Chorion Membrane Allograft Treatment by Increasing Proliferation, Migration, and Altering Cytokine Secretion. Adv Wound Care (New Rochelle). 2016; 5(2):43-54.
PMC: 4742987.
DOI: 10.1089/wound.2015.0661.
View
19.
Maan Z, Rennert R, Koob T, Januszyk M, Li W, Gurtner G
. Cell recruitment by amnion chorion grafts promotes neovascularization. J Surg Res. 2014; 193(2):953-962.
PMC: 4425288.
DOI: 10.1016/j.jss.2014.08.045.
View
20.
Boulton A, Kirsner R, Vileikyte L
. Clinical practice. Neuropathic diabetic foot ulcers. N Engl J Med. 2004; 351(1):48-55.
DOI: 10.1056/NEJMcp032966.
View