» Articles » PMID: 31476272

Selective CO Electroreduction to Ethylene and Multicarbon Alcohols Via Electrolyte-Driven Nanostructuring

Overview
Specialty Chemistry
Date 2019 Sep 3
PMID 31476272
Citations 27
Authors
Affiliations
Soon will be listed here.
Abstract

Production of multicarbon products (C ) from CO electroreduction reaction (CO RR) is highly desirable for storing renewable energy and reducing carbon emission. The electrochemical synthesis of CO RR catalysts that are highly selective for C products via electrolyte-driven nanostructuring is presented. Nanostructured Cu catalysts synthesized in the presence of specific anions selectively convert CO into ethylene and multicarbon alcohols in aqueous 0.1 m KHCO solution, with the iodine-modified catalyst displaying the highest Faradaic efficiency of 80 % and a partial geometric current density of ca. 31.2 mA cm for C products at -0.9 V vs. RHE. Operando X-ray absorption spectroscopy and quasi in situ X-ray photoelectron spectroscopy measurements revealed that the high C selectivity of these nanostructured Cu catalysts can be attributed to the highly roughened surface morphology induced by the synthesis, presence of subsurface oxygen and Cu species, and the adsorbed halides.

Citing Articles

Electrolyte Anions Suppress Hydrogen Generation in Electrochemical CO Reduction on Cu.

Fuller L, Zhang G, Noh S, Van Lehn R, Schreier M Angew Chem Int Ed Engl. 2024; 64(10):e202421196.

PMID: 39724507 PMC: 11878348. DOI: 10.1002/anie.202421196.


Direct low concentration CO electroreduction to multicarbon products via rate-determining step tuning.

Xie L, Cai Y, Jiang Y, Shen M, Chun-Ho Lam J, Zhu J Nat Commun. 2024; 15(1):10386.

PMID: 39613736 PMC: 11607466. DOI: 10.1038/s41467-024-54590-7.


Recent advances in microenvironment regulation for electrocatalysis.

Xu Z, Tan X, Chen C, Wang X, Sui R, Zhuang Z Natl Sci Rev. 2024; 11(12):nwae315.

PMID: 39554232 PMC: 11562841. DOI: 10.1093/nsr/nwae315.


Selectively electrolyzing CO to ethylene by a Cu-CuO/rGO catalyst derived from copper hydroxide nanostrands/graphene oxide nanosheets.

Peng C, Yao B, Wang L, Wan X RSC Adv. 2024; 14(49):36602-36609.

PMID: 39553279 PMC: 11566724. DOI: 10.1039/d4ra07259f.


Restructuring of Cu-based Catalysts during CO Electroreduction: Evidence for the Dominant Role of Surface Defects on the C Product Selectivity.

Rollier F, Muravev V, Parastaev A, van de Poll R, Heinrichs J, Ligt B ACS Catal. 2024; 14(17):13246-13259.

PMID: 39263539 PMC: 11385435. DOI: 10.1021/acscatal.4c02718.


References
1.
Montoya J, Shi C, Chan K, Norskov J . Theoretical Insights into a CO Dimerization Mechanism in CO2 Electroreduction. J Phys Chem Lett. 2015; 6(11):2032-7. DOI: 10.1021/acs.jpclett.5b00722. View

2.
Perez-Gallent E, Figueiredo M, Calle-Vallejo F, Koper M . Spectroscopic Observation of a Hydrogenated CO Dimer Intermediate During CO Reduction on Cu(100) Electrodes. Angew Chem Int Ed Engl. 2017; 56(13):3621-3624. DOI: 10.1002/anie.201700580. View

3.
Xiao H, Goddard 3rd W, Cheng T, Liu Y . Cu metal embedded in oxidized matrix catalyst to promote CO activation and CO dimerization for electrochemical reduction of CO. Proc Natl Acad Sci U S A. 2017; 114(26):6685-6688. PMC: 5495255. DOI: 10.1073/pnas.1702405114. View

4.
Hirsch O, Kvashnina K, Luo L, Suess M, Glatzel P, Koziej D . High-energy resolution X-ray absorption and emission spectroscopy reveals insight into unique selectivity of La-based nanoparticles for CO₂. Proc Natl Acad Sci U S A. 2015; 112(52):15803-8. PMC: 4702991. DOI: 10.1073/pnas.1516192113. View

5.
Weng Z, Wu Y, Wang M, Jiang J, Yang K, Huo S . Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction. Nat Commun. 2018; 9(1):415. PMC: 5788987. DOI: 10.1038/s41467-018-02819-7. View