» Articles » PMID: 3147472

Clonidine Infusions into the Locus Coeruleus Attenuate Behavioral and Neurochemical Changes Associated with Naloxone-precipitated Withdrawal

Overview
Specialty Pharmacology
Date 1988 Jan 1
PMID 3147472
Citations 30
Authors
Affiliations
Soon will be listed here.
Abstract

Clonidine, an alpha-2-adrenergic agonist, suppresses signs of opiate withdrawal in animals and in man. Electrical or chemical stimulation of the nucleus locus coeruleus (LC) increases noradrenergic activity and brain concentration of the noradrenergic metabolite MHPG, and produces many signs of opiate withdrawal. Thus, clonidine's ability to attenuate withdrawal might be due to the reduction of noradrenergic neuronal activity originating in the LC, but additional alpha-2-adrenergic receptors throughout the body and other mechanisms may also play a role. The present study explored the neuroanatomical and pharmacological selectivity of alpha-2-adrenergic receptors of the LC in the anti-withdrawal action of clonidine. Experiment 1 tested the hypothesis that behavioral and biochemical measures of naloxone-precipitated withdrawal from morphine would be blocked by infusions of clonidine (0.6 or 2.4 micrograms/microliters) into the LC. Significant reductions were observed in the occurrence of diarrhea, ptosis, weight loss and wet-dog shakes. Clonidine also reversed the naloxone-precipitated increase in hippocampus MHPG concentration. In experiment 2 subjects received an LC infusion or IP injection of a non-lipophilic alpha-2-agonist (ST-91), which does not penetrate the blood-brain barrier, or of clonidine into the dorsal parabrachial nucleus (DPB) to test the selectivity of the effects of clonidine infusions into the LC. ST-91 infusions into the LC reduced several of the observed withdrawal signs and increased others (e.g., jumping). Although peripheral injections of ST-91 attenuated some of the checked signs associated with naloxone-precipitated withdrawal, the frequency of wet-dog shakes was not reduced. ST-91 infusions into the LC, but not systemic ST-91 administration, prevented the withdrawal-induced increase in hippocampus MHPG concentration. Clonidine infused lateral to the LC into the DPB did not significantly attenuate withdrawal or reduce hippocampus MHPG levels. These results provide behavioral and biochemical evidence to support the suggestion that clonidine significantly attenuates naloxone-precipitated withdrawal through an interaction with noradrenergic neurons located in the vicinity of the LC.

Citing Articles

A historical perspective on clonidine as an alpha-2A receptor agonist in the treatment of addictive behaviors: Focus on opioid dependence.

Gold M, Blum K, Bowirrat A, Pinhasov A, Bagchi D, Dennen C INNOSC Theranostics Pharmacol Sci. 2024; 7(3).

PMID: 39119149 PMC: 11308626. DOI: 10.36922/itps.1918.


NEURONAL CORRELATES OF HYPERALGESIA AND SOMATIC SIGNS OF HEROIN WITHDRAWAL IN MALE AND FEMALE MICE.

Alvarez-Bagnarol Y, Marchette R, Francis C, Morales M, Vendruscolo L eNeuro. 2022; .

PMID: 35728954 PMC: 9267003. DOI: 10.1523/ENEURO.0106-22.2022.


Blockade of Serotonin 5-HT Receptors Suppresses Behavioral Sensitization and Naloxone-Precipitated Withdrawal Symptoms in Morphine-Treated Mice.

Pang G, Wu X, Tao X, Mao R, Liu X, Zhang Y Front Pharmacol. 2017; 7:514.

PMID: 28082900 PMC: 5183621. DOI: 10.3389/fphar.2016.00514.


Activation of serotonin 5-HT(2C) receptor suppresses behavioral sensitization and naloxone-precipitated withdrawal symptoms in morphine-dependent mice.

Zhang G, Wu X, Zhang Y, Liu H, Jiang Q, Pang G Neuropharmacology. 2015; 101:246-54.

PMID: 26432939 PMC: 4996259. DOI: 10.1016/j.neuropharm.2015.09.031.


Activation of serotonin 5-HT(2C) receptor suppresses behavioral sensitization and naloxone-precipitated withdrawal symptoms in heroin-treated mice.

Wu X, Pang G, Zhang Y, Li G, Xu S, Dong L Neurosci Lett. 2015; 607:23-28.

PMID: 26375926 PMC: 4631619. DOI: 10.1016/j.neulet.2015.09.013.


References
1.
Freedman J, Aghajanian G . Opiate and alpha 2-adrenoceptor responses of rat amygdaloid neurons: co-localization and interactions during withdrawal. J Neurosci. 1985; 5(11):3016-24. PMC: 6565174. View

2.
Gianutsos G, Hynes M, Lal H . Enhancement of morphine-withdrawal and apomorphine-induced aggression by clonidine. Psychopharmacol Commun. 1976; 2(2):165-71. View

3.
van der Laan J . Effects of alpha 2-agonists on morphine withdrawal behaviour: potentiation of jumping mediated by alpha 2-receptors. Naunyn Schmiedebergs Arch Pharmacol. 1985; 329(3):293-8. DOI: 10.1007/BF00501883. View

4.
Przegalinski E, Sloniec M, Kleinrok Z . Clonidine-induced locomotor hyperactivity in rats. The role of central postsynaptic alpha-adrenoceptors. Naunyn Schmiedebergs Arch Pharmacol. 1977; 297(3):227-31. DOI: 10.1007/BF00509265. View

5.
UPrichard D, Reisine T, Mason S, Fibiger H, Yamamura H . Modulation of rat brain alpha- and beta-adrenergic receptor populations by lesion of the dorsal noradrenergic bundle. Brain Res. 1980; 187(1):143-54. DOI: 10.1016/0006-8993(80)90500-4. View