» Articles » PMID: 31471536

Dataset on Equine Cartilage Near Infrared Spectra, Composition, and Functional Properties

Overview
Journal Sci Data
Specialty Science
Date 2019 Sep 1
PMID 31471536
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Near infrared (NIR) spectroscopy is a well-established technique that is widely employed in agriculture, chemometrics, and pharmaceutical engineering. Recently, the technique has shown potential in clinical orthopaedic applications, for example, assisting in the diagnosis of various knee-related diseases (e.g., osteoarthritis) and their pathologies. NIR spectroscopy (NIRS) could be especially useful for determining the integrity and condition of articular cartilage, as the current arthroscopic diagnostics is subjective and unreliable. In this work, we present an extensive dataset of NIRS measurements for evaluating the condition, mechanical properties, structure, and composition of equine articular cartilage. The dataset contains NIRS measurements from 869 different locations across the articular surfaces of five equine fetlock joints. A comprehensive library of reference values for each measurement location is also provided, including results from a mechanical indentation testing, digital densitometry imaging, polarized light microscopy, and Fourier transform infrared spectroscopy. The published data can either be used as a model of human cartilage or to advance equine veterinary research.

Citing Articles

Preparation and tissue structure analysis of horse bone collagen peptide.

Wu J, Na H, Bai F, Li S, Gao H, Sha R Sci Rep. 2024; 14(1):25687.

PMID: 39463408 PMC: 11514178. DOI: 10.1038/s41598-024-75960-7.


Spatial analysis of the osteoarthritis microenvironment: techniques, insights, and applications.

Fan X, Sun A, Young R, Afara I, Hamilton B, Ong L Bone Res. 2024; 12(1):7.

PMID: 38311627 PMC: 10838951. DOI: 10.1038/s41413-023-00304-6.


Extended-wavelength diffuse reflectance spectroscopy dataset of animal tissues for bone-related biomedical applications.

Li C, Fisher C, Komolibus K, Lu H, Burke R, Visentin A Sci Data. 2024; 11(1):136.

PMID: 38278822 PMC: 10817894. DOI: 10.1038/s41597-024-02972-3.


Vibrational Spectroscopy in Assessment of Early Osteoarthritis-A Narrative Review.

Yu C, Zhao B, Li Y, Zang H, Li L Int J Mol Sci. 2021; 22(10).

PMID: 34063436 PMC: 8155859. DOI: 10.3390/ijms22105235.


Dataset on equine cartilage near infrared spectra, composition, and functional properties.

Sarin J, Torniainen J, Prakash M, Rieppo L, Afara I, Toyras J Sci Data. 2019; 6(1):164.

PMID: 31471536 PMC: 6717194. DOI: 10.1038/s41597-019-0170-y.

References
1.
Oinas J, Rieppo L, Finnila M, Valkealahti M, Lehenkari P, Saarakkala S . Imaging of Osteoarthritic Human Articular Cartilage using Fourier Transform Infrared Microspectroscopy Combined with Multivariate and Univariate Analysis. Sci Rep. 2016; 6:30008. PMC: 4956759. DOI: 10.1038/srep30008. View

2.
Brown T, Johnston R, Saltzman C, Marsh J, Buckwalter J . Posttraumatic osteoarthritis: a first estimate of incidence, prevalence, and burden of disease. J Orthop Trauma. 2006; 20(10):739-44. DOI: 10.1097/01.bot.0000246468.80635.ef. View

3.
Sarin J, Rieppo L, Brommer H, Afara I, Saarakkala S, Toyras J . Combination of optical coherence tomography and near infrared spectroscopy enhances determination of articular cartilage composition and structure. Sci Rep. 2017; 7(1):10586. PMC: 5587743. DOI: 10.1038/s41598-017-10973-z. View

4.
Sarin J, Moller N, Mancini I, Brommer H, Visser J, Malda J . Arthroscopic near infrared spectroscopy enables simultaneous quantitative evaluation of articular cartilage and subchondral bone in vivo. Sci Rep. 2018; 8(1):13409. PMC: 6128946. DOI: 10.1038/s41598-018-31670-5. View

5.
Oinas J, Ronkainen A, Rieppo L, Finnila M, Iivarinen J, van Weeren P . Composition, structure and tensile biomechanical properties of equine articular cartilage during growth and maturation. Sci Rep. 2018; 8(1):11357. PMC: 6063957. DOI: 10.1038/s41598-018-29655-5. View