» Articles » PMID: 31467266

Ultrabright Gap-enhanced Raman Tags for High-speed Bioimaging

Overview
Journal Nat Commun
Specialty Biology
Date 2019 Aug 31
PMID 31467266
Citations 40
Authors
Affiliations
Soon will be listed here.
Abstract

Surface-enhanced Raman spectroscopy (SERS) is advantageous over fluorescence for bioimaging due to ultra-narrow linewidth of the fingerprint spectrum and weak photo-bleaching effect. However, the existing SERS imaging speed lags far behind practical needs, mainly limited by Raman signals of SERS nanoprobes. In this work, we report ultrabright gap-enhanced Raman tags (GERTs) with strong electromagnetic hot spots from interior sub-nanometer gaps and external petal-like shell structures, larger immobilization surface area, and Raman cross section of reporter molecules. These GERTs reach a Raman enhancement factor beyond 5 × 10 and a detection sensitivity down to a single-nanoparticle level. We use a 370 μW laser to realize high-resolution cell imaging within 6 s and high-contrast (a signal-to-background ratio of 80) wide-area (3.2 × 2.8 cm) sentinel lymph node imaging within 52 s. These nanoprobes offer a potential solution to overcome the current bottleneck in the field of SERS-based bioimaging.

Citing Articles

In vivo surface-enhanced Raman scattering techniques: nanoprobes, instrumentation, and applications.

Chang H, Hur W, Kang H, Jun B Light Sci Appl. 2025; 14(1):79.

PMID: 39934124 PMC: 11814295. DOI: 10.1038/s41377-024-01718-5.


Clinical applications of nanoprobes of high-resolution imaging.

Kong S, Liu H, Zhang Y, Fan J, Huang W iScience. 2025; 28(1):111459.

PMID: 39829681 PMC: 11742322. DOI: 10.1016/j.isci.2024.111459.


Orthogonal gap-enhanced Raman tags for interference-free and ultrastable surface-enhanced Raman scattering.

Li J, Liu F, He C, Shen F, Ye J Nanophotonics. 2024; 11(8):1549-1560.

PMID: 39635286 PMC: 11501518. DOI: 10.1515/nanoph-2021-0689.


Quantitative and sensitive detection of alpha fetoprotein in serum by a plasmonic sensor.

Xiong Y, Hu H, Zhang T, Xu Y, Gao F, Chen W Nanophotonics. 2024; 11(21):4821-4829.

PMID: 39634743 PMC: 11501717. DOI: 10.1515/nanoph-2022-0428.


Cascaded microsphere-coupled surface-enhanced Raman spectroscopy (CMS-SERS) for ultrasensitive trace-detection.

Mi Y, Yan Y, Wang M, Yang L, He J, Jiang Y Nanophotonics. 2024; 11(3):559-570.

PMID: 39633797 PMC: 11501333. DOI: 10.1515/nanoph-2021-0620.


References
1.
Kearns H, Ali F, Bedics M, Shand N, Faulds K, Detty M . Sensitive SERS nanotags for use with a hand-held 1064 nm Raman spectrometer. R Soc Open Sci. 2017; 4(7):170422. PMC: 5541563. DOI: 10.1098/rsos.170422. View

2.
Sergiienko S, Moor K, Gudun K, Yelemessova Z, Bukasov R . Nanoparticle-nanoparticle vs. nanoparticle-substrate hot spot contributions to the SERS signal: studying Raman labelled monomers, dimers and trimers. Phys Chem Chem Phys. 2017; 19(6):4478-4487. DOI: 10.1039/c6cp08254h. View

3.
Nayak T, Andreou C, Oseledchyk A, Marcus W, Wong H, Massague J . Tissue factor-specific ultra-bright SERRS nanostars for Raman detection of pulmonary micrometastases. Nanoscale. 2016; 9(3):1110-1119. PMC: 5438878. DOI: 10.1039/c6nr08217c. View

4.
Kircher M, de la Zerda A, Jokerst J, Zavaleta C, Kempen P, Mittra E . A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat Med. 2012; 18(5):829-34. PMC: 3422133. DOI: 10.1038/nm.2721. View

5.
Ayala-Orozco C, Urban C, Knight M, Urban A, Neumann O, Bishnoi S . Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells. ACS Nano. 2014; 8(6):6372-81. PMC: 4076033. DOI: 10.1021/nn501871d. View